K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

\(x+y+z=1\\ \Rightarrow\left\{{}\begin{matrix}x=1-y-z\\y=1-x-z\\z=1-x-y\end{matrix}\right.\)

\(S=\dfrac{\left(xy+z\right)\left(yz+x\right)\left(zx+y\right)}{\left(1-x\right)^2\left(1-y\right)^2\left(1-z\right)^2}\)

\(\Rightarrow S=\dfrac{\left(xy+1-x-y\right)\left(yz+1-y-z\right)\left(zx+1-x-z\right)}{\left(x+y+z-x\right)^2\left(x+y+z-y\right)^2\left(x+y+z-z\right)^2}\)

\(\Rightarrow S=\dfrac{\left[\left(xy-x\right)-\left(y-1\right)\right]\left[\left(yz-y\right)-\left(z-1\right)\right]\left[\left(zx-x\right)-\left(z-1\right)\right]}{\left(y+z\right)^2\left(x+z\right)^2\left(x+y\right)^2}\)

\(\Rightarrow S=\dfrac{\left[x\left(y-1\right)-\left(y-1\right)\right]\left[y\left(z-1\right)-\left(z-1\right)\right]\left[x\left(z-1\right)-\left(z-1\right)\right]}{\left(y+z\right)^2\left(x+z\right)^2\left(x+y\right)^2}\)

\(\Rightarrow S=\dfrac{\left(x-1\right)\left(y-1\right)\left(y-1\right)\left(z-1\right)\left(x-1\right)\left(z-1\right)}{\left(y+z\right)^2\left(x+z\right)^2\left(x+y\right)^2}\)

\(\Rightarrow S=\dfrac{\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2}{\left(y+z\right)^2\left(x+z\right)^2\left(x+y\right)^2}\)

\(\Rightarrow S=\dfrac{\left(x-x-y-z\right)^2\left(y-x-y-z\right)^2\left(z-x-y-z\right)^2}{\left(y+z\right)^2\left(x+z\right)^2\left(x+y\right)^2}\)

\(\Rightarrow S=\dfrac{\left(-y-z\right)^2\left(-x-z\right)^2\left(-x-y\right)^2}{\left(y+z\right)^2\left(x+z\right)^2\left(x+y\right)^2}\)

\(\Rightarrow S=\dfrac{\left(y+z\right)^2\left(x+z\right)^2\left(x+y\right)^2}{\left(y+z\right)^2\left(x+z\right)^2\left(x+y\right)^2}\)

\(\Rightarrow S=1\)

 

17 tháng 6 2018

a, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có :

\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)

b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có :

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)

c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)

Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)

d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

Ta có :

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)

e, Câu cuối bn làm tương tự như câu a, b, c nhé!

17 tháng 6 2018

bạn ơi cho mình hỏi là chứ A viết ngược kia là gì vậy ạ?

15 tháng 2 2020

Ta có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)mà xy+yz+zx=0

\(\Rightarrow x^2+y^2+z^2=0\left(1\right)\)

Lại có: \(x^2,y^2,z^2\ge0\Rightarrow x^2+y^2+z^2\ge0\)Kết hợp (1)

\(\Leftrightarrow x^2=y^2=z^2=0\Leftrightarrow x=y=z=0\)

Vậy \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=-1+0+1=0\)

15 tháng 2 2020

Ta có : \(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=0\) ( Do \(xy+yz+zx=0\) )

\(\Rightarrow x^2+y^2+z^2=xy+yz+zx\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow x=y=z\)

Khi đó : \(x+y+z=3x=0\)

\(\Rightarrow x=0\Rightarrow x=y=z=0\)

Nên \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=0\)

Vậy : \(T=0\).

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

a)

Ta thấy \(\left\{\begin{matrix} |x+\frac{19}{5}|\geq 0\\ |y+\frac{1890}{1975}|\geq 0\\ |z-2005|\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{Z}\)

\(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|\geq 0\)

Do đó, để \(|x+\frac{19}{5}|+|y+\frac{1890}{1975}|+|z-2005|=0\) thì :

\(\left\{\begin{matrix} |x+\frac{19}{5}|= 0\\ |y+\frac{1890}{1975}|= 0\\ |z-2005|=0\end{matrix}\right.\Rightarrow x=\frac{-19}{5}; y=\frac{-1890}{1975}; z=2005\)

b) Giống phần a, vì trị tuyệt đối của một số luôn không âm nên để tổng các trị tuyệt đối bằng $0$ thì:

\(\left\{\begin{matrix} |x+\frac{3}{4}|=0\\ |y-\frac{1}{5}|=0\\ |x+y+z|=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-\frac{3}{4}\\ y=\frac{1}{5}\\ z=-(x+y)=\frac{11}{20}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

c) \(\frac{16}{2^x}=1\Rightarrow 16=2^x\)

\(\Leftrightarrow 2^4=2^x\Rightarrow x=4\)

d) \((2x-1)^3=-27=(-3)^3\)

\(\Rightarrow 2x-1=-3\)

\(\Rightarrow 2x=-2\Rightarrow x=-1\)

e) \((x-2)^2=1=1^2=(-1)^2\)

\(\Rightarrow \left[\begin{matrix} x-2=1\\ x-2=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=1\end{matrix}\right.\)

f) \((x+\frac{1}{2})^2=\frac{4}{25}=(\frac{2}{5})^2=(\frac{-2}{5})^2\)

\(\Rightarrow \left[\begin{matrix} x+\frac{1}{2}=\frac{2}{5}\\ x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-1}{10}\\ x=\frac{-9}{10}\end{matrix}\right.\)

g) \((x-1)^2=(x-1)^6\)

\(\Leftrightarrow (x-1)^6-(x-1)^2=0\)

\(\Leftrightarrow (x-1)^2[(x-1)^4-1]=0\)

\(\Rightarrow \left[\begin{matrix} (x-1)^2=0\\ (x-1)^4=1=(-1)^4=1^4\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x-1=-1\\ x-1=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x=\left\{0;1;2\right\}\)

22 tháng 8 2017

\(1.z\left(x-y\right)\leftrightarrow c.xz-yz\)

\(2.\left(x+y\right):z\leftrightarrow a.x:y+y:z\)

\(3.\left(y+z\right):x\leftrightarrow d.x:z+y:z\)

\(4.x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)\leftrightarrow b.x\cdot\dfrac{1}{y+z}\)

2 tháng 5 2018

viết lại bt P đi

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

Ta có: \(\left\{{}\begin{matrix}x^2=yz\\y^2=xz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{z}{x}\\\dfrac{x}{y}=\dfrac{y}{z}\end{matrix}\right.\Rightarrow\left\{\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\right\}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, Ta có:

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=1\Rightarrow x=y=z\)

\(\Rightarrow P=3x^3.\left(\dfrac{1}{\left(3x\right)^3}\right)=\dfrac{3x^3}{27x^3}=\dfrac{1}{9}\)

Vậy \(P=\dfrac{1}{9}\)

11 tháng 4 2018

Thì ra là vậy

hihi...vui