K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

Ta có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)mà xy+yz+zx=0

\(\Rightarrow x^2+y^2+z^2=0\left(1\right)\)

Lại có: \(x^2,y^2,z^2\ge0\Rightarrow x^2+y^2+z^2\ge0\)Kết hợp (1)

\(\Leftrightarrow x^2=y^2=z^2=0\Leftrightarrow x=y=z=0\)

Vậy \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=-1+0+1=0\)

15 tháng 2 2020

Ta có : \(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=0\) ( Do \(xy+yz+zx=0\) )

\(\Rightarrow x^2+y^2+z^2=xy+yz+zx\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow x=y=z\)

Khi đó : \(x+y+z=3x=0\)

\(\Rightarrow x=0\Rightarrow x=y=z=0\)

Nên \(T=\left(0-1\right)^{2013}+0^{2013}+\left(0+1\right)^{2013}=0\)

Vậy : \(T=0\).

12 tháng 12 2016

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

12 tháng 12 2016

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

22 tháng 12 2017

\(\dfrac{x}{10}=\dfrac{y}{14}=\dfrac{z}{15}=t\)

\(10.14.t^2+14.15.t^2+10.15.t^2=-2000\) < 0 loai

Vay ko co gt nao .....

4 tháng 10 2016

\(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow\frac{2014.2015.x}{2013.2014.2015}=\)\(\frac{y.2013.2015}{2013.2014.2015}=\frac{2013.2014.z}{2013.2014.2015}\)

\(\Rightarrow2014.2015.x=y.2013.2015=z.2013.2014\)

\(\Rightarrow x=2013;y=2014;z=2015\)

Đến đây bạn tự thay vào rồi tính nhé!

25 tháng 7 2019

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)

Do \(x-y-z=0\)

\(\Rightarrow x-z=y;y-x=-z;y+z=x\)

Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

Vậy A=-1

25 tháng 7 2019

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz+y+1}{yz+y+1}\)

\(=1\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:

Dễ thấy:

$|7x-5y|\geq 0$ với mọi $x,y$

$|2z-3x|\geq 0$ với mọi $x,z$

$|xy+yz+xz-2000|\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì:

$|7x-5y|=|2z-3x|=|xy+yz+xz-2000|=0$

\(\Rightarrow \left\{\begin{matrix} 7x=5y\\ 2z=3x\\ xy+yz+xz=2000\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\ xy+yz+xz=2000\end{matrix}\right.\)

Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=t\Rightarrow x=10t; y=14t; z=15t\)

\(\Rightarrow 2000=xy+yz+xz=10t.14t+10t.15t+14t.15t\)

\(\Leftrightarrow 2000=500t^2\Rightarrow t^2=4\Rightarrow t=\pm 2\)

\(\Rightarrow (x,y,z)=(20; 28; 30); (-20; -28; -30)\)

Vậy.......

AH
Akai Haruma
Giáo viên
28 tháng 3 2020

Lời giải:
Dễ thấy:

$|7x-5y|\geq 0$ với mọi $x,y$

$|2z-3x|\geq 0$ với mọi $x,z$

$|xy+yz+xz-2000|\geq 0$ với mọi $x,y,z$

Do đó để tổng của 3 số trên bằng $0$ thì:

$|7x-5y|=|2z-3x|=|xy+yz+xz-2000|=0$

\(\Leftrightarrow \left\{\begin{matrix} 7x=5y\\ 2z=3x\\ xy+yz+xz=2000\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\ xy+yz+xz=2000(*)\end{matrix}\right.\)

Đặt $\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=t\Rightarrow x=10t; y=14t; z=15t$

Thay vào $(*)\Leftrightarrow 500t^2=2000\Rightarrow t=\pm 2$

$\Rightarrow (x,y,z)=(\pm 20,\pm 28, \pm 30)$