Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\text{Theo bài ra: }\overline{abc}+\overline{bca}+\overline{cab}=666\)
\(\Rightarrow100a+10b+c+100b+10c+a+100c+10a+b=666\)
\(\Rightarrow111a+111b+111c=666\)
\(\Rightarrow111\left(a+b+c\right)=666\)
\(\Rightarrow a+b+c=6\)
\(-Do\left\{{}\begin{matrix}a>b>c>0\\a;b;c\in N\circledast\end{matrix}\right.\text{ nên suy ra }\left\{{}\begin{matrix}a=3\\b=2\\c=1\end{matrix}\right.\)
\(\text{Vậy số cần tìm là 321.}\)
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
\(\left(x-2\right)\left(x+\dfrac{4}{11}\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\Rightarrow x>2\\x+\dfrac{4}{11}>0\Rightarrow x>-\dfrac{4}{11}\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\Rightarrow x< 2\\x+\dfrac{4}{11}< 0\Rightarrow x< -\dfrac{4}{11}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x< 2\) hoặc \(x>-\dfrac{4}{11}\)
\(x^2-x< 0\)
\(\Rightarrow x\left(x-1\right)< 0\)
Với mọi giá trị \(x\in R\) thì \(x-1< x\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-1< 0\Rightarrow x< -1\end{matrix}\right.\)
Vậy \(x>0\) hoặc \(x< -1\)
Bài 1:
\(A=3^{3m^2+6n-61}+4\)
Ta thấy \(3m^2+6n-61=3(m^2+2n-21)+2=3t+2\)
Do đó: \(A=3^{3t+2}+4\)
Ta thấy: \(3^{3}\equiv 1\pmod {13}\Rightarrow 3^{3t}\equiv 1\pmod {13}\)
\(\Rightarrow 3^{3t+2}\equiv 9\pmod {13}\Leftrightarrow A=3^{3t+2}+4\equiv 13\equiv 0\pmod {13}\)
Do đó \(A\vdots 13\)
Để $A$ là số nguyên tố thì \(A=13\Leftrightarrow 3^{3m^2+6n-61}+4=13\)
\(\Leftrightarrow 3m^2+6n-61=2\)
\(\Leftrightarrow m^2+2n=21\)
Từ đây suy ra m lẻ. Mà: \(n>0\Rightarrow m^2=21-2n\leq 21\)
\(\Leftrightarrow m\leq 4\)
Do đó: \(m\in\left\{1;3\right\}\)
+) \(m=1\Rightarrow n=10\Rightarrow (m,n)=(1,10)\)
\(+)m=3\Rightarrow n=6\Rightarrow (m,n)=(3,6)\)
Bài 2:
a)
Nếu \(a,b\) đều lẻ thì \(c\) chẵn. Mà $c$ là số nguyên tố nên $c=2$
\(\Rightarrow a,b< c\Leftrightarrow a,b< 2 \) (vô lý)
Nếu $a,b$ đều chẵn \(\Rightarrow a=b=2\Rightarrow c=8\not\in\mathbb{P}\)
Do đó $a,b$ khác tính chẵn lẻ. Không mất tính tổng quát giả sử $b=2$, còn $a$ lẻ
Ta có: \(a^2+2^a=c\)
Ta biết rằng một số chinh phương khi chia cho $3$ thì có dư là $0;1$.
Nếu \(a\vdots 3\Rightarrow a=3\Rightarrow c=17\in\mathbb{P}\)
Nếu \(a\not\vdots 3\Rightarrow a^2\equiv 1\pmod 3\)
Và: \(2^a\equiv (-1)^a\equiv -1\pmod 3\) (do a lẻ)
\(\Rightarrow a^2+2^a\equiv 1+(-1)\equiv 0\pmod 3\) hay \(c\equiv 0\pmod 3\)
\(\Rightarrow c=3\)
Do đó: \(2^a+a^2=3\Rightarrow 2^a<3\Rightarrow a<2 \) (vô lý)
Vậy \((a,b,c)=(3,2,17)\) và hoán vị $a,b$
b) \(a^2-2b^2=1\)
\(\Leftrightarrow a^2=2b^2+1\)
Ta biết rằng một số chính phương khi chia $3$ dư $0$ hoặc $1$
Nếu \(b^2\equiv 0\pmod 3\Rightarrow b\equiv 0\pmod 3\Rightarrow b=3\)
\(\Rightarrow a^2=19\Rightarrow a\not\in\mathbb{P}\)
Nếu \(b^2\equiv 1\pmod 3\Rightarrow 2b^2+1\equiv 3\equiv 0\pmod 3\Leftrightarrow a^2\equiv 0\pmod 3\)
\(\Rightarrow a\vdots 3\Rightarrow a=3\)
Thay vào suy ra \(b=2\) (thỏa mãn)
Vậy \((a,b)=(3,2)\)
cau b
nhung mi la thanh chi bai ma ly cua tau