\(\dfrac{4}{11}\) ) > 0

b, x2 - x < 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

\(\left(x-2\right)\left(x+\dfrac{4}{11}\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\Rightarrow x>2\\x+\dfrac{4}{11}>0\Rightarrow x>-\dfrac{4}{11}\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\Rightarrow x< 2\\x+\dfrac{4}{11}< 0\Rightarrow x< -\dfrac{4}{11}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x< 2\) hoặc \(x>-\dfrac{4}{11}\)

\(x^2-x< 0\)

\(\Rightarrow x\left(x-1\right)< 0\)

Với mọi giá trị \(x\in R\) thì \(x-1< x\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-1< 0\Rightarrow x< -1\end{matrix}\right.\)

Vậy \(x>0\) hoặc \(x< -1\)

12 tháng 9 2017

Lập đàn cầu thánh nhân :^)

9 tháng 1 2018

a) ta có bảng xét dấu của \(\left(x-1\right)\left(x-2\right)\) như sau .

\(x\) \(-\infty\) 1 2 \(+\infty\)
\(x-1\) \(-\) \(0\) \(+\) \(1\) \(+\)
\(x-2\) \(-\) \(-1\) \(-\) \(0\) \(+\)
\(\left(x-1\right)\left(x-2\right)\) \(+\) \(0\) \(-\) \(0\) \(+\)

từ bảng xét dấu ta có : \(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow\) \(\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)

vậy \(x>2\) hoặc \(x< 1\)

b) ta có bảng xét dấu của \(\left(x-2\right)^2\left(x+1\right)\left(x-4\right)\) như sau .

\(x\) \(-\infty\) \(-1\) \(2\) \(4\) \(+\infty\)
\(x+1\) \(-\) \(0\) \(+\) \(3\) \(+\) \(5\) \(+\)
\(\left(x-2\right)^2\) \(+\) \(9\) \(+\) \(0\) \(+\) \(9\) \(+\)
\(x-4\) \(-\) \(-5\) \(-\) \(-2\) \(-\) \(0\) \(+\)
\(\left(x-2\right)^2\left(x+1\right)\left(x-4\right)\) \(+\) \(0\) \(-\) \(0\) \(-\) \(0\) \(+\)

từ bảng xét dấu ta có : \(\left(x-2\right)^2\left(x+1\right)\left(x-4\right)< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\x\ne2\end{matrix}\right.\)

vậy \(-1< x< 4\)\(x\ne2\)

c) \(\dfrac{5}{x}< 1\Leftrightarrow x>5\) vậy \(x>5\)

28 tháng 8 2017

mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha

a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)

b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)

\(\Leftrightarrow x>-2\) vậy \(x>-2\)

c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)

d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)

e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)

f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)

vậy \(x>6\) hoặc \(x< 2\)

g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)

th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)

th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)

vậy \(x>3\) hoặc \(-2< x< 1\)

h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)

i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)

vậy \(-2< x< 1\)

27 tháng 8 2017

Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!

11 tháng 8 2018

a) \(x^2y>0\) . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2 dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |\(x^2y>0\)

b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y

Suy ra -x + y =

c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.

d)tương tự như các bài trên

e) tương tự các bài trên. Mình lười làm òi!

14 tháng 11 2018

a) x2y>0x2y>0 . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |x2y>0x2y>0

b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y

Suy ra -x + y =

c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.

b: \(\dfrac{2x+3}{3-x}\le0\)

\(\Leftrightarrow\dfrac{2x+3}{x-3}\ge0\)

=>x>3 hoặc x<=-3/2

c: \(\dfrac{x+5}{x+3}>1\)

\(\Leftrightarrow\dfrac{x+5-x-3}{x+3}>0\)

=>2/(x+3)>0

=>x+3>0

hay x>-3

a)\(1-2x< 1\)

\(\Leftrightarrow2x>0\)

\(\Leftrightarrow x>0\)

b)\(\left(x-2\right)^2\left(x+1\right)\left(x-4\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne2\\\left(x+1\right)\left(x-4\right)< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne2\\x+1< 0\\x-4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x\ne2\\x+1>0\\x-4< 0\end{cases}}\)

mà \(x+1>x-4\forall x\)

nên \(\hept{\begin{cases}x\ne2\\x+1>0\\x-4< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne2\\x>-1\\x< 4\end{cases}}\)

hay \(\hept{\begin{cases}x\ne2\\-1< x< 4\end{cases}}\)

c)\(x-2< 0\)

\(\Leftrightarrow x< 2\)

d)\(\frac{x^2\left(x-3\right)}{x-9}< 0\left(x\ne9\right)\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\\frac{x-3}{x-9}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-3< 0\\x-9>0\end{cases}}\)hoặc \(\hept{\begin{cases}x\ne0\\x-3>0\\x-9< 0\end{cases}}\)

mà \(x-3>x-9\forall x\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-3>0\\x-9< 0\end{cases}}\)\(\Leftrightarrow3< x< 9\)

e)\(\frac{5}{x}< 1\left(x\ne0\right)\)

\(\Leftrightarrow x>5\)

f)\(8x>2x\)

\(\Leftrightarrow6x>0\)

\(\Leftrightarrow x>0\)

g)\(x+a< a\)

\(\Leftrightarrow x< 0\)

h)\(x^3< x^2\)

\(\Leftrightarrow x^2\left(x-1\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x< 1\end{cases}}\)

4 tháng 3 2020

a)(x-1).(x-2)>0

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)>0\\\left(x-2\right)>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\)

Vậy x>2

b)(x-2)2.(x+1).(x-4)<0

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2< 0\\\left(x+1\right)< 0\\\left(x-4\right)< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x< 2\\x< -1\\x< 4\end{cases}}\)

Vậy x<(-1)

c)Từ đề bài, ta suy ra:

\(\left(x-9\right)< 0\Leftrightarrow x< 9\)

d)\(\frac{5}{x}< 1\Leftrightarrow x< 5\)

4 tháng 3 2020

\(\left(x-1\right)\left(x-2\right)>0\)

TH1: \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\Rightarrow x>2\)

TH2: \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\Rightarrow x< 1\)

9 tháng 1 2018

a) \(A=5-3.\left(3x-1\right)^2=-\left[3\left(3x-1\right)^2-5\right]\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow3.\left(3x-1\right)^2\ge0\)

\(\Rightarrow3\left(3x-1\right)^2-5\ge-5\forall x\)

\(\Rightarrow-\left[3\left(3x-1\right)^2-5\right]\ge5\forall x\)

Vậy \(MinA=5\Leftrightarrow x=\dfrac{1}{3}\)

26 tháng 6 2017

a/ \(\left(x+1\right)\left(x-2\right)< 0\)

TH1:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\) (vô lý)

TH2:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow-1< x< 2\)

Vậy.........

b/ \(\left(x-3\right)\left(x-4\right)>0\)

TH1:\(\left\{{}\begin{matrix}x-3>0\\x-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>3\\x>4\end{matrix}\right.\)\(\Rightarrow x>4\)

TH2:\(\left\{{}\begin{matrix}x-3< 0\\x-4< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 3\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 3\)

Vậy...............

c/ \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}-\dfrac{1}{8}\)

\(\Rightarrow\dfrac{-1}{12}< x< -\dfrac{5}{48}\)

Vậy...............

26 tháng 6 2017

Để ( x + 1 ) ( x - 2 ) < 0

=> x + 1 và x - 2 phải khác dấu mà x + 1 > x + 2

=> x + 1 dương x + 2 âm

Tức là x + 1 > 0 => x > - 1 và x - 2 < 0 => x < 2