Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+y^2=25(1)
x^2-y^2=7
cộng vế theo vế còn 2x^2=32
x^2=16
thế x^2=16 vào 1 ta có 16+y^2=25
y^2=9
x^4+y^4=(x^2)^2+(y^2)^2=16^2+9^2=337
x^2+y^2=25
x^2-y^2=7
=> 2.x^2=32
x^2=16
=> y^2=16-7=9
x^4+y^4=16^2+9^2=1296
\(x^4-2x^3+3x^2+ax+b=\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)
Đồng nhất thức :
\(\hept{\begin{cases}-2x^3=2cx^3\\3x^2=\left(c^2+2d\right)x^2\\ax=2cdx;b=d^2\end{cases}}< =>\hept{\begin{cases}c=-1\\c^2+2d=3\\2cd=a;b=d^2\end{cases}}< =>\hept{\begin{cases}c=-1\\2d=3-c^2=2=>d=1\\a=2.\left(-1\right).1=-2;b=d^2=>b=1\end{cases}}\)
tóm lại a=-2;b=d=1;c=-1
Vậy a+b=-2+1=-1
Phân số chỉ số phần Lan góp
1-1/4-3/10=9/20
Hiệu số phần của Lan và Mai
9/20-3/10=3/20
Sơ đồ
3/20-3000đ
1-?
Giá tiền mua quả bóng đó
3000x1:3/20=20000đ
Đáp số 20000đ
a/ Nối AC cắt BD tại O => OB=OD và OA=OC (T/c đường chéo hbh) (1)
+ Xét tg ABC có
MB=MC (đề bài) => AM là trung tuyến thuộc cạnh BC
OA=OC (cmt)
=> K là trọng tâm tg ABC => OK=2/3OB (2) => OK=1/2KB (*)
+ Xét tg ACD chứng minh tương tự => L là trọng tâm tg ACD => OL=2/3OD (3) => OL=1/2DL (**)
Từ (1) (2) (3) => OK=OL=2/3OB=2/3OD (***)
Từ (*) (**) (***) => OL+OK=LK=DL=KB (dpcm)
b/
+ Từ kết quả câu a => BD=3LK (1)
+ Xét tg BCD có
MB=MC và ND=NC => MN là đường trung bình của tg BCD => BD=2MN (2)
Từ (1) và (2) => 3LK=2MN => LK=2/3MN
Em nghĩ là giữ nguyên số km và chia số phút cho 60. Nếu đúng thì anh chị giúp em nhé.
Đây là đáp án bài 2 nha bn tham khảo
do a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1 với 1 ≤ n < (400-1) / 60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
Ta có :
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+....+\frac{1}{\left(x+5\right)\left(x+6\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+....+\frac{1}{x+5}-\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)
\(=\frac{6}{x\left(x+6\right)}\)
\(x-y=5\Leftrightarrow\left(x-y\right)^2=25\)
\(\Leftrightarrow x^2-2xy+y^2=25\)
\(\Leftrightarrow15-2xy=25\)
\(\Leftrightarrow2xy=-10\)
\(\Leftrightarrow xy=-5\)
Từ đó : \(M=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=5\cdot\left(15-5\right)=50\)
Vậy....