K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 7 2021

\(y'=\dfrac{x^2-2x+2m-2}{\left(x-1\right)^2}\)

Hàm có 2 cực trị \(\Leftrightarrow y'=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}2m-3\ne0\\\Delta'=1-\left(2m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow m< \dfrac{3}{2}\)

Khi đó, phương trình đường thẳng qua 2 cực trị có dạng:

\(y=\dfrac{2x-2m}{1}=2x-2m\)

Đường thẳng này có cùng hệ số góc với d nên chúng song song nhau

Tham khảo:

undefined

undefined

undefined

3 tháng 3 2019

Ta có: \(y'=3x^2-6x\)\(\Rightarrow d:y=-2x+2\)

\(\Delta\) song song với \(d\Leftrightarrow-2=2m\Leftrightarrow m=-1\)

23 tháng 4 2016

\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m-2\right)\)

\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m-2=0\)

Hàm số có cực đại và cực tiểu \(\Leftrightarrow f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(m-3\right)^2>0\Leftrightarrow m\ne3\)

Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m-1\right)\right]-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

Với \(m\ne3\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại  \(x_1;x_2\)  do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) nên \(\begin{cases}y_1=f\left(x_1\right)=-m\left(m-3\right)^2x_1-\left(m^2-3m+3\right)\\y_2=f\left(x_2\right)=-m\left(m-3\right)^2x_2-\left(m^2-3m+3\right)\end{cases}\)

Suy ra đường thẳng qua cực đại, cực tiểu là :

\(\Delta:y=-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

ta có \(\Delta\) song song với đường \(y=ax+b\)

\(\Leftrightarrow\begin{cases}m\ne3\\-\left(m-3\right)^2=a\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne3,a< 0\\\left(m-3\right)^2=-a\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m-3=\pm\sqrt{-a}\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m=3\pm\sqrt{-a}\end{cases}\)

Vậy : Nếu \(a\ge0\) thì không tồn tại m

         Nếu a < 0 thì \(m=3\pm\sqrt{-a}\)

 

21 tháng 4 2017

Lời giải + diễn giải

để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm

a) \(y'=3x^2-6x+m\)

xét f(x)= 3x^2 -6x+m

để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)

\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)

Kết luận với m< 3 hàm A(x) luôn có cực trị

b)

\(y'=3x^2+4mx+m\)

\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)

c)

\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)

\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)

\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)

9 tháng 7 2021

Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:

giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2

Ta đi tìm số dư 1 cách tổng quát: 

Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\) 

Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3

từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\) 

Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này ) 

áp dụng vào bài toán ta có: 

\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)

Gán:  \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i

\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke

 

 

 

9 tháng 7 2021

Khiếp học ghê như vầy bảo dạy người ta thì kêu thôi, sợ sót kiến thức :)))?

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoànhBài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác...
Đọc tiếp

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành

Bài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)

Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về cùng một phía đối với trục tung

Bài 4: Cho hàm số \(y=-x^3+2(m-1)x^2-(m^2-3m+2)x-4\)

(m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung

Bài 5: Cho hàm số \(y=-x^3+3x^2+3(m^2-1)x-3m^2-1\) (1). Tìm m để hàm số (1) có cực đại, cực tiểu, đồng thời các điểm cực đại và cực tiểu cùng với gốc tọa độ O tạo thành một tam giác vuông tại O

 

5
NV
18 tháng 7 2021

1.

Đồ thị hàm bậc 3 có 2 điểm cực trị nằm về 2 phía trục hoành khi và chỉ khi \(f\left(x\right)=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3+3x^2+mx+m-2=0\) có 3 nghiệm pb

\(\Leftrightarrow x^3+3x^2-2+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-2\right)+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+m-2=0\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2+m-2\ne0\\\Delta'=1-\left(m-2\right)>0\end{matrix}\right.\) 

\(\Leftrightarrow m< 3\)

NV
18 tháng 7 2021

2.

Pt hoành độ giao điểm:

\(\dfrac{2x-2}{x+1}=2x+m\)

\(\Rightarrow2x-2=\left(2x+m\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+mx+m+2=0\) (1)

d cắt (C) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-8\left(m+2\right)>0\Rightarrow\left[{}\begin{matrix}m>4+4\sqrt{2}\\m< 4-4\sqrt{2}\end{matrix}\right.\)

Khi đó, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{m}{2}\\x_Ax_B=\dfrac{m+2}{2}\end{matrix}\right.\)

\(y_A=2x_A+m\) ; \(y_B=2x_B+m\)

\(\Rightarrow AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(2x_A-2x_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2=1\)

\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=1\)

\(\Leftrightarrow\left(-\dfrac{m}{2}\right)^2-4\left(\dfrac{m+2}{2}\right)=1\)

\(\Leftrightarrow m^2-8m-20=0\Rightarrow\left[{}\begin{matrix}m=10\\m=-2\end{matrix}\right.\)

NV
30 tháng 8 2020

2.

\(y'=3x^2+6\left(m-1\right)x+6m-12\)

Để hàm số có 2 cực trị

\(\Leftrightarrow\Delta'=9\left(m-1\right)^2-3\left(6m-12\right)>0\)

\(\Leftrightarrow9m^2-36m+45>0\) (luôn đúng)

Tiến hành chia y cho y' và lấy phần dư ta được pt đường thẳng AB có dạng:

\(y=\left(2m-6\right)x-2m^2+6m-5\)

AB song song d khi và chỉ khi:

\(\left\{{}\begin{matrix}2m-6=-4\\-2m^2+6m-5\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\-2m^2+6m-6\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)

NV
30 tháng 8 2020

1.

Đường thẳng d: \(9x-2y+5=0\Leftrightarrow y=\frac{9}{2}x+\frac{5}{2}\)

\(y'=3x^2+4\left(m-1\right)x+m^2-4m+1\)

Để hàm số có 2 cực trị

\(\Leftrightarrow\Delta'=4\left(m-1\right)^2-3m^2+12m-3>0\)

\(\Leftrightarrow m^2+4m+1>0\)

Khi đó, tiến hành chia \(y\) cho \(y'\) và lấy phần dư ta được pt AB có dạng:

\(y=\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)x-2m^2-2-\frac{2}{9}\left(m-1\right)\left(m^2-4m+1\right)\)

Để AB vuông góc d \(\Leftrightarrow\) tích 2 hệ số góc bằng -1

\(\Leftrightarrow\frac{9}{2}\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)=-1\)

\(\Leftrightarrow3m^2-16m+8=0\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{8+2\sqrt{10}}{3}\\m=\frac{8-2\sqrt{10}}{3}\end{matrix}\right.\)

Bạn nên tính toán lại cho chắc

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm