Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :
\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)
Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm
Vậy không tồn tại m thỏa mãn yêu cầu bài toán
b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)
Suy ra \(y'\ge m-\frac{7}{3}\)
Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)
Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)
Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)
Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)
\(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)
Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)
=> Các điểm cực trị là :
\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)
Gọi I là giao điểm của hai đường thẳng d và d' :
\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)
A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)
Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d
Vậy m = 0 là giá trị cần tìm
Ta có \(M\left(-1;-2\right)\)
Phương trình của (C) tại M là \(\Delta:y=y'\left(-1\right)\left(x+1\right)-2\)
hay \(\Delta:y=9x+7\)
\(\Delta\) // d \(\Leftrightarrow\begin{cases}m^2+5=9\\3m+1\ne7\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm2\\m\ne2\end{cases}\) \(\Leftrightarrow m=-2\)
Gọi \(H=BC\cap Oy\) thì AH là đường cao tam giác ABC
Ta có \(H\left(0;c-\frac{b^2}{4a}\right)\Rightarrow AH=\frac{b^2}{4\left|a\right|}\)
\(\sin\widehat{ACH}=\frac{AH}{AC}=\frac{AH}{AB}\Rightarrow R=\frac{AB}{2\sin\widehat{ACH}}=\frac{AB^2}{2AH}=\frac{b^3-8a}{8\left|a\right|b}\)
Từ yêu cầu bài toán \(\Leftrightarrow\begin{cases}ab< 0\\R=1\end{cases}\) \(\Leftrightarrow\begin{cases}m>0\\m^3-2m+1=0\end{cases}\)
\(\Leftrightarrow m=1\) hoặc \(m=\frac{-1+\sqrt{5}}{2}\)
Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:
giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2
Ta đi tìm số dư 1 cách tổng quát:
Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\)
Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3
từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\)
Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này )
áp dụng vào bài toán ta có:
\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)
Gán: \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i
\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke
Khiếp học ghê như vầy bảo dạy người ta thì kêu thôi, sợ sót kiến thức :)))?
Chọn A
[Phương pháp trắc nghiệm]
y ' = 3 x 2 + 2 m x + 7
Bấm máy tính
Đường thẳng đi qua 2 điểm cực trị là
\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m-2\right)\)
\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m-2=0\)
Hàm số có cực đại và cực tiểu \(\Leftrightarrow f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(m-3\right)^2>0\Leftrightarrow m\ne3\)
Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m-1\right)\right]-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)
Với \(m\ne3\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại \(x_1;x_2\) do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) nên \(\begin{cases}y_1=f\left(x_1\right)=-m\left(m-3\right)^2x_1-\left(m^2-3m+3\right)\\y_2=f\left(x_2\right)=-m\left(m-3\right)^2x_2-\left(m^2-3m+3\right)\end{cases}\)
Suy ra đường thẳng qua cực đại, cực tiểu là :
\(\Delta:y=-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)
ta có \(\Delta\) song song với đường \(y=ax+b\)
\(\Leftrightarrow\begin{cases}m\ne3\\-\left(m-3\right)^2=a\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne3,a< 0\\\left(m-3\right)^2=-a\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m-3=\pm\sqrt{-a}\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m=3\pm\sqrt{-a}\end{cases}\)
Vậy : Nếu \(a\ge0\) thì không tồn tại m
Nếu a < 0 thì \(m=3\pm\sqrt{-a}\)
Ta có \(y'=3x^2-6x\)
Gọi \(M\left(x_0;x_0^3-3x^3_0+4\right)\) là điểm thuộc đồ thị (C)
Hệ số góc tiếp tuyến của đồ thị (C) tại M là \(k=y'\left(x_0\right)=3x_0^2-6x_0\)
Vì tiếp tuyến của đồ thị tại M song song với đường thẳng \(d:y=9x+3\) nên có hệ số góc \(k=9\)
\(\Leftrightarrow3x_0^2-6x_0=9\Leftrightarrow x_0^2-2x_0-3=0\Leftrightarrow x_0=-1\) V \(x_0=3\)
Vậy \(M\left(-1;0\right)\) và \(M\left(3;4\right)\) đều không thuộc d nên thỏa mãn yêu cầu bài toán
Ta có: \(y'=3x^2-6x\)\(\Rightarrow d:y=-2x+2\)
\(\Delta\) song song với \(d\Leftrightarrow-2=2m\Leftrightarrow m=-1\)