K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đáp án là x 3

26 tháng 11 2017

điền dấu

là      x         3

31 tháng 7 2017

\(A=5x+\dfrac{180}{x-1}=5\left(x-1\right)+\dfrac{180}{x-1}+5\)

\(\ge2\sqrt{\dfrac{5\left(x-1\right).180}{x-1}}+5=65\)

Đẳng thức xảy ra \(\Leftrightarrow5\left(x-1\right)=\dfrac{180}{x-1}\Leftrightarrow x=7\)

26 tháng 11 2017

TA CÓ :\(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)

\(\Rightarrow\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{3}+\sqrt{2}}+2014=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{3}+\sqrt{2}}+2014\)

                                                     \(=1+2014=2015\)

Vậy giá trị biểu thức là 2015.

31 tháng 7 2017

\(x^2\ge0\forall x\in R\) nên

\(D\ge\dfrac{2}{3+\sqrt{9}}=\dfrac{1}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow x=0\)

3 tháng 8 2016

Bài này pạn lấy cách làm ở đâu vậy ?

29 tháng 12 2015

ai tik mik mik tik lại cho

30 tháng 12 2015

Người ta giúp bạn, bạn còn đặt điều kiện. bạn thicks tích cho ai thì tick điều đó đâu có sao. Nhưng bạn ra giá vậy sau chẳng ai giúp bạn đâu. Bạn nghĩ là ngồi gõ mỏi tay để đổi **** à.???

14 tháng 6 2019

à nhon mik thiếu 

Cho a > 0; b > 0; c > 0

Chứng minh bất đẳng thức: 40 đề luyện thi học sinh giỏi môn Toán lớp 9

abc là số bất kì lớn hơn 0

học tốt

21 tháng 7 2018

( câu 6 nhé

( câu 7 nhé )

10 tháng 11 2017

a) Từ gt, suy ra

\(\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)+\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+2\right)+\left(x+y+2\right)^2=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left(2x^2-2xy+2y^2+2x+2y+4\right)=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)

Do đó: \(x+y+2=0\Leftrightarrow x+y=-2\)

Mặt khác \(xy>0\Rightarrow x< 0;y< 0\)

Áp dụng AM-GM, ta có

\(\sqrt{\left(-x\right)\left(-y\right)}\le\dfrac{\left(-x\right)+\left(-y\right)}{2}=1\) nên \(xy\le1\)\(\Rightarrow\dfrac{-2}{xy}\le-2\)

\(M=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\le-2\)

GTLN của M là -2 khi x=y=-1

10 tháng 11 2017

Áp dụng Cauchy-Schwarz dạng Engel, ta có

\(VT=\dfrac{a^6}{a^3+a^2b+b^2a}+\dfrac{b^6}{b^3+b^2c+c^2b}+\dfrac{c^6}{c^3+c^2a+ca^2}\ge\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Mặt khác: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

Tương tự: \(b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(3\left(a^3+b^3+c^3\right)\ge a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(\Rightarrow\dfrac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\dfrac{a^3+b^3+c^3}{3}\)

Vậy ta có đpcm. Đẳng thức xảy ra khi và chỉ khi a=b=c