Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Điều kiện của một bất phương trình là các điều kiện của ẩn x sao cho các biểu thức của bất phương trình đó đều có nghĩa.
- Hai bất phương trình được gọi là tương đương nếu chúng có cùng tập nghiệm.a
Sử dụng tính chất “cộng hay trừ hai vế một bất đẳng thức với cùng một số và giữ nguyên chiều bất đẳng thức ta được một bất đẳng thức tương đương”.
Đáp án: A
Điều kiện của (1) và điều kiện của (2) là
Hai bất phương trình đã cho không tương đương với nhau vì có x = -1 là một nghiệm của (1) nhưng không là nghiệm của (2).
Nhận xét:Phép biến đổi đồng nhất làm mở rộng tập xác định, dẫn tới thay đổi điều kiện của phương trình, do đó có thể làm xuất hiện nghiệm ngoại lai.
Thử trực tiếp ta thấy ngay x = -3 là nghiệm của bất phương trình (1) nhưng không là nghiệm bất phương trình (2), vì vậy (1) và (2) không tương đương do đó phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.
Nếu bình phương hai vế (khử căn thức chứa ẩn) của bất phương trình 1 - x ≤ x ta nhận được bất phương trình 1 - x ≤ x 2
Bất phương trình nhận được không tương đương với bất phương trình đã cho vì có x = 2 không phải là nghiệm bất phương trình đã cho nhưng lại là nghiệm của bất phương trình mới nhận được sau phép bình phương.
Ghi nhớ: Không được bình phương hai vế một bất phương trình vì có thể làm xuất hiện nghiệm ngoại lai.
Nếu nhân hai vế của 1/x ≤ 1 với x, ta được bất phương trình mới x ≥ 1; bất phương trình này không tương đương với bất phương trình đã cho vì đã làm mất đi tất cả các nghiệm âm của nó.
Ghi nhớ: Không được nhân hay chia hai vế của một bất phương trình với một biểu thức chứa ẩn mà không biết dấu của biểu thức đó.
Nếu bình phương cả hai vế của bất phương trình ta được bất phương trình:\(1-x\le x^2\).
BPT này là bất phương trình hệ quả của bất phương trình ban đầu vì khi bình phương hai vế của bất phương trình thì hai vế phải luôn không âm.
Nhân hai vế của bất phương trình với x ta được:\(1< x\). Bất phương trình này không tương đương với bất phương trình \(\dfrac{1}{x}< 1\) vì chưa thể khẳng định \(x>0\) mà ta phải xét hai trường hợp:
Th1: x > 0: \(Bpt\Leftrightarrow1< x\).
Th2: x < 0 \(Bpt\Leftrightarrow1>x\)
Cách 1:
* Ta có: 2x > 1 ⇔ x > 1 2
* Xét: 2 x + x + 2 > 1 + x + 2
Điều kiện: x ≥ - 2
Với điều kiện trên, (1) tương đương: 2 x > 1 ⇔ x > 1 2
Kết hợp điều kiện ta được nghiệm của bất phương trình này là: x > 1 2
Do đó, bất phương trình đã cho tương đương bất phương trình D.
Cách 2: Dùng phương pháp loại trừ.
· x = 1 là nghiệm của bất phương trình 2x > 1 nhưng không là nghiệm của bất phương trình 2 x + x - 2 > 1 + x - 2 , do đó hai bất phương trình không tương đương.
· x= -2 là nghiệm của bất phương trình 4x2 > 1 nhưng không là nghiệm bất phương trình 2x > 1.
· x = 3 là nghiệm của bất phương trình 2x > 1 nhưng không là nghiệm của bất phương trình 2 x - 1 x - 3 > 1 - 1 x - 3 , do đó hai bất phương trình không tương đương. Đáp án là D
Ta gọi các điều kiện của ẩn sốx để các biểu thức f(x) và g(x) có nghĩa là điều kiện xác định của bất phương trình (hay gọi tắt là điều kiện của bất phương trình).
- Hai bất phương trình được gọi là tương đương khi chúng có cùng tập nghiệm