Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\[\begin{array}{l}
Q = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}} - \frac{{\sqrt x - 1}}{{\sqrt x + 1}}} \right)\\
Q = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}.\frac{{{{\left( {\sqrt x + 1} \right)}^2} - {{\left( {\sqrt x - 1} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
Q = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}.\frac{{4\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
Q = \frac{{4\sqrt x {{\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
Q = \frac{{4\sqrt x {{\left( {\frac{{x - 1}}{{2\sqrt x }}} \right)}^2}}}{{x - 1}}\\
Q = \frac{{\sqrt x .\frac{{{{\left( {x - 1} \right)}^2}}}{x}}}{{x - 1}}\\
Q = \frac{{x\sqrt x - \sqrt x }}{x}
\end{array}\]
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Đkxđ : x#1 , x > 0
Q = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
Q = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
Q=\(\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
Q=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
Q=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}X\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
Q=\(\dfrac{x-1}{\sqrt{x}}\)
b)Thay x = 2\(\sqrt{2}\)+3 vào phương trình ta được :
Q=\(\dfrac{2\sqrt{2}+3-1}{\sqrt{2\sqrt{2}+3}}\)
Q=\(\dfrac{2\sqrt{2}+2}{\sqrt{\left(\sqrt{2}+1\right)}^2}\)
Q=\(\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
Q= 2
![](https://rs.olm.vn/images/avt/0.png?1311)
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
ĐKXĐ :x\(\ne\)9,x\(\ge\)0
<=> \(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{x-9}\)
=\(\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)
=\(\dfrac{3\sqrt{x}-9}{x-9}\)=\(\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3}{\sqrt{x}+3}\)
ta có : A=1/3 => \(\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}=>\sqrt{x}+3=9\)
=> x=36
vậy giá trị của x=36 khi A=1/3
B=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-1}\right):\dfrac{1}{\sqrt{x}+1}\)
ĐKXĐ: x\(\ne\)1 ,x\(\ge\)0
<=> \(\dfrac{\sqrt{x}+1-\sqrt{x}}{x-1}:\dfrac{1}{\sqrt{x}+1}\)
=\(\dfrac{1}{x-1}:\dfrac{1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{x-1}=\dfrac{1}{\sqrt{x}-1}\)
ta có : B<0 =>\(\dfrac{1}{\sqrt{x}-1}< 0\)
=> 1< \(\sqrt{x}-1\)=> \(\sqrt{x}\)>2=>x>4
vậy x>4 khi B<0
\(ĐKXĐ:x\ne9\Rightarrow A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9} =\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}+\dfrac{3x+9}{x-9}=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3}{\sqrt{x}+3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,ĐKXĐ \(x\ge0;x\ne1\)
Ta có A=\(\dfrac{x+2\sqrt{x}+1+2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2\sqrt{x}+1-x+\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
A=\(\dfrac{4\sqrt{x}}{x-1}.\dfrac{x-1}{2\sqrt{x+1}}\)
A=\(\dfrac{4\sqrt{x}}{2\sqrt{x}+1}\)
b, Thay x=\(1-\dfrac{\sqrt{3}}{2}\) vào biểu thức A ta có
A=\(\dfrac{4\sqrt{1-\dfrac{\sqrt{3}}{2}}}{2\sqrt{1-\dfrac{\sqrt{3}}{2}}+1}=\dfrac{\sqrt{16-8\sqrt{3}}}{\sqrt{4-2\sqrt{3}}+1}=\dfrac{6-2\sqrt{3}}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)
\(=1+2\sqrt{2}+2-3\)
\(=2\sqrt{2}\)
3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)
ĐKXĐ \(x>0,x\ne1\)
pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)
\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)
b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)
Vì \(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)
mà \(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)
Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)
(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐKXĐ: : phải là 1 biểu thức có nghĩa. b) ko có x nên ko phải tìm
Ô xin lỗi bạn, do lúc trước mình ko thấy đề nên bấm bậy, xin lỗi nhiều
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+1=x+\sqrt{x}\)đk \(x>1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) điều kiện xác định : \(x>0;x\ne1\)
ta có : \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x}{2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{x-1}\right)=-2\sqrt{x}\)
b) để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0< x< 9\) và \(x\ne1\)
vậy ....
bạn ơi kiểm tra lại xem cỏ phải mẫu chung của bạn thiếu (\(\sqrt{x}-1\)) thì phải.
GHi nhầm số chứ không phải thiếu.
`P=(x+2)/(xsqrtx+1)+(sqrtx-1)/(x-sqrtx+1)-(sqrtx-1)/(x-1)(x>=0,x ne 1)`
`=(x+2)/((sqrtx+1)(x-sqrtx+1))+(sqrtx-1)/(x-sqrtx+1)-(sqrtx-1)/((sqrtx-1)(sqrtx+1))`
`=(x+2)/((sqrtx+1)(x-sqrtx+1))+((sqrtx-1)(sqrtx+1))/((sqrtx+1)(x-sqrtx+1))-1/(sqrtx+1)`
`(x+2)/((sqrtx+1)(x-sqrtx+1))+((sqrtx-1)(sqrtx+1))/((sqrtx+1)(x-sqrtx+1))-(x-sqrtx+1)/((sqrtx+1)(x-sqrtx+1))`
`=(x+2+x-1-x+sqrtx-1)/((sqrtx+1)(x-sqrtx+1))`
`=(x+sqrtx)/((sqrtx+1)(x-sqrtx+1))`
`=(sqrtx(sqrtx+1))/((sqrtx+1)(x-sqrtx+1))`
`=sqrtx/(x-sqrtx+1)`