Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)
\(#\)GTNN đưa về dạng \(A^2+m\) với \(m\) là hằng số khi đó ta được \(A^2\)\(+m\) ≥\(m\) sau đó tìm dấu "=" xảy ra khi nào ( Dấu bằng xảy ra khi A\(^2\)\(=0\)) sau đó kết luận .
VD : Tìm GTNN của \(A=\)\(x^2+2x+3\)
A \(=\left(x^2+2x+1\right)+2\)\(=\left(x+1\right)^2+2\) ≥ \(2\)
Dấu "=" xảy ra khi \(\left(x+1\right)^2=0=>x=-1\)
Vậy \(A_{min}=2< =>x=-1\)
\(#\)GTLN đưa về dạng \(k-B^2\) với \(k\) là hằng số khi đó ta tìm được \(k-B^2\)≤ \(k\) sau đó tìm dấu "=" xảy ra khi nào ( Dấu bằng xảy ra khi \(B^2=0\)) sau đó kết luận.
VD Tìm GTLN của \(B=10+4x-x^2\)
B\(=-x^2+4x-4+14\)\(=14-\left(x^2-4x+4\right)\)\(=14-\left(x-2\right)^2\) ≤ 14
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0=>x=2\)
Vậy \(B_{max}=14< =>x=2\)
Đây là một câu hỏi quá rộng nên rất khó để trả lời.
Tìm được max hay min thì có nhiều phương pháp, đã được đề cập trong nhiều đầu sách/ tài liệu.
Thông thường phân thức người ta sẽ nói rõ là tìm max hay min rồi.
Đối với phân thức mà người ta nói tìm max hoặc min (không nói rõ), nếu ta thấy nó có những điều kiện để xảy ra dấu $\geq$ thì nó có min và ngược lại, nó có những điều kiện để tạo ra dấu $\leq$ thì nó có max. Còn điều kiện là gì thì tùy bài quyết định.
Có một quy luật khi mà so sánh \(\left|x\right|\)với số \(a\) như sau:
Nhỏ thì ấp ủ: \(\left|x\right|\le a\Leftrightarrow-a\le x\le a\)
Lớn thì tung cánh: \(\left|x\right|\ge a\Leftrightarrow\orbr{\begin{cases}x\ge a\\x\le-a\end{cases}}\)
Như vậy \(\left|x\right|< 3\Leftrightarrow-3< x< 3\)
Về lý thuyết thì có thể tính toán chính xác được điểm rơi mà ko cần đoán, nhưng thực tế thì dạng này thường tách A để xuất hiện \(a+2b+3c\) và phần còn lại sẽ tự ghép:
\(4A=4a+4b+4c+\dfrac{12}{a}+\dfrac{18}{b}+\dfrac{16}{c}\)
\(\Rightarrow4A=a+2b+3c+\left(3a+\dfrac{12}{a}\right)+\left(2b+\dfrac{18}{b}\right)+\left(c+\dfrac{16}{c}\right)\)
\(\Rightarrow4A\ge20+2\sqrt{\dfrac{36a}{a}}+2\sqrt{\dfrac{36b}{b}}+2\sqrt{\dfrac{16c}{c}}=...\)
áp dụng cái này nefk |A|-|B|\(\le\)|A+B|\(\le\)|A|+|B|