K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Ta có : \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

=> \(\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)

=> \(\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

=> \(\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

Vì \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)

=> x - 357 = 0

=> x = 357

Vậy x = 357

18 tháng 5 2019

bn xem lại đề đc k ?

theo mk thì là = 10 chứ k phải =0

24 tháng 8 2020

Ejjsjdjejdjejddjrjshdjsndndjkedkwkwmdmrmmsmdknwsndjjejdjdjrhdujrjddufjrjdsjjdjehddudhrhdhhhehrdhhehdhdhhheheyehehehdhdyryhehedhdhehehherhrhrhfhdhehdhurhedhdfudhrhdhhhd

22 tháng 2 2019

\(2x^4+3x^3+8x^2+6x+5=0\)

\(\Leftrightarrow2x^4+2x^3+2x^2+x^3+x^2+x+5x^2+5x+5=0\)

\(\Leftrightarrow2x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(2x^2+x+5\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(2x^2+x+5=2\left[\left(x+\frac{1}{4}\right)^2+\frac{39}{16}\right]>0\forall x\)

Vậy tập nghiệm của pt là \(S=\varnothing\)

b, \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

\(\Leftrightarrow\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)

\(\Leftrightarrow\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

\(\Leftrightarrow\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

\(\Leftrightarrow x-357=0\Leftrightarrow x=357\) 

Vậy tập nghiệm của pt: \(S=\left\{357\right\}\)

Chúc bạn học tốt :))

30 tháng 12 2018

\(\Leftrightarrow\left(\frac{x+14}{86}+1\right)+\left(\frac{x+15}{85}+1\right)+\left(\frac{x+16}{84}+1\right)+\left(\frac{x+17}{83}+1\right)+\left(\frac{166}{4}-4\right)=0\)

\(\Leftrightarrow\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)

\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(x+100\right)=0\Rightarrow x=-100\left(\text{vì }\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2019

Câu a)

\(2x^4+3x^3+8x^2+6x+5=0\)

\(\Leftrightarrow (2x^4+2x^3+2x^2)+(x^3+x^2+x)+5x^2+5x+5=0\)

\(\Leftrightarrow 2x^2(x^2+x+1)+x(x^2+x+1)+5(x^2+x+1)=0\)

\(\Leftrightarrow (x^2+x+1)(2x^2+x+5)=0\)

\(\Rightarrow \left[\begin{matrix} x^2+x+1=0\\ 2x^2+x+5=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} (x+\frac{1}{2})^2+\frac{3}{4}=0\\ 2(x+\frac{1}{4})^2+\frac{39}{8}=0\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

Cách khác:

PT \(\Leftrightarrow 4x^4+6x^3+16x^2+12x+10=0\)

\(\Leftrightarrow 3x^4+(x^4+6x^3+9x^2)+7x^2+12x+10=0\)

\(\Leftrightarrow 3x^4+(x^2+3x)^2+(4x^2+12x+9)+3x^2+1=0\)

\(\Leftrightarrow 3x^4+(x^2+3x)^2+(2x+3)^2+3x^2=-1\)

(vô lý vì vế phải âm còn vế trái không âm)

Vậy pt vô nghiệm.

AH
Akai Haruma
Giáo viên
22 tháng 2 2019

Câu b:

\(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

\(\Leftrightarrow \frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}-10=0\)

\(\Leftrightarrow \frac{x-342}{15}-1+\frac{x-323}{17}-2+\frac{x-300}{19}-3+\frac{x-273}{21}-4=0\)

\(\Leftrightarrow \frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

\(\Leftrightarrow (x-357)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

Dễ thấy \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\neq 0\), do đó $x-357=0$ hay $x=357$ là nghiệm duy nhất của pt.

19 tháng 4 2020
https://i.imgur.com/wgXaoMx.jpg
14 tháng 7 2017

1. \(\left(2x-1\right)^3+\left(x+2\right)^3=\left(3x+1\right)^3\)

\(\Rightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8=27x^3+27x^2+9x+1\)

\(\Rightarrow-18x^3-33x^2+9x+6=0\)\(\Rightarrow\left(x+2\right)\left(-18x^2+3x+3\right)=0\)

\(\Rightarrow\left(x+2\right)\left(2x-1\right)\left(-9x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2};x=-\frac{1}{3}\end{cases}}\)

Vậy \(x=-2;x=\frac{1}{2};x=-\frac{1}{3}\)

2. \(\frac{x-1988}{15}+\frac{x-1969}{17}+\frac{x-1946}{19}+\frac{x-1919}{21}=10\)

\(\Rightarrow\left(\frac{x-1988}{15}-1\right)+\left(\frac{x-1969}{17}-2\right)+\left(\frac{x-1946}{19}-3\right)+\left(\frac{x-1919}{21}-4\right)=0\)

\(\Rightarrow\frac{x-2003}{15}+\frac{x-2003}{17}+\frac{x-2003}{19}+\frac{x-2003}{21}=0\)

\(\Rightarrow x-2003=0\)do \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)

Vậy \(x=2003\)

3. Đặt \(\hept{\begin{cases}2009-x=a\\x-2010=b\end{cases}}\)

\(\Rightarrow\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Rightarrow49a^2+49ab+49b^2=19a^2-19ab+19b^2\)

\(\Rightarrow30a^2+68ab+30b^2=0\Rightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5a=-3b\\3a=-5b\end{cases}}\)

Với \(5a=-3b\Rightarrow5\left(2009-x\right)=-3\left(x-2010\right)\)

\(\Rightarrow-2x=-4015\Rightarrow x=\frac{4015}{2}\)

Với \(3a=-5b\Rightarrow3\left(2009-x\right)=-5\left(x-2010\right)\)

\(\Rightarrow2x=4023\Rightarrow x=\frac{4023}{2}\)

Vậy \(x=\frac{4023}{2}\)hoặc \(x=\frac{4015}{2}\)