K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

chọn 5 đội trong 12 đội có \(C^5_{12}=792\) cách

=> \(n\left(\Omega\right)=792\) 

Gọi A:" 5 đội được chọn có ít nhất 1 đội cờ đỏ khối 10 và ít nhất 1 đội cờ đỏ khối 11 " 

+) 1 đội K10 +4 đội K11 => có \(C^1_5.C^4_7=175\) cách 

+) 2 đội K10 +3 đội K11 => có \(C^2_5.C^3_7=350\)cách  

+) 3 đội k10 + 2 đội k11 => có \(C^3_5.C^2_7=210\) cách 

+) 4 độ k10 + 1 đội k11 => có \(C^4_5.C^1_7=35\)cách 

=> n(A) = 175+350+210+35 = 770 

=> P(A) = 770/792=35/36 

9 tháng 2 2018

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

- Chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2

 +) Số cách chọn 2 nam còn lại:  C 13 2

Suy ra có 5 A 15 2 C 13 2  cách chọn cho trường hợp này.

- Chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ: C 5 2  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2 cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có  13 A 15 2 C 5 2  cách chọn cho trường hợp này.

- Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ :  C 5 3  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó:  A 15 2  cách.

Suy ra có  A 15 2 C 5 2  cách chọn cho trường hợp 3.

Vậy có 5 A 15 2 C 13 2 + 13 A 15 2 . C 5 2 + A 15 2 . C 5 3 = 111300  cách.

Chọn đáp án D.

25 tháng 12 2019

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

 chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  

 +) Số cách chọn 2 nam còn lại:

Suy ra có  cách chọn cho trường hợp này.

 chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ:  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:   cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có  cách chọn cho trường hợp này.

 Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ :  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó:  cách.

Suy ra có  cách chọn cho trường hợp 3.

Vậy có  cách.

Chọn D.

30 tháng 6 2017

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

Chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2

 +) Số cách chọn 2 nam còn lại:  C 13 2

Suy ra có 5 A 15 2 . C 13 2  cách chọn cho trường hợp này.

Chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ: C 5 2  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó: A 15 2 cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có 13 A 15 2 . C 5 2  cách chọn cho trường hợp này.

Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ : C 5 3  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó: A 15 2  cách.

Suy ra có A 15 2 . C 5 3  cách chọn cho trường hợp 3.

Vậy có 5 A 15 2 . C 13 2 + 13 A 15 2 . C 5 2 + A 15 2 . C 5 3 = 111300  cách.

Chọn đáp án D

16 tháng 12 2019

Đáp án D

Tổng số cách chọn 8 em từ đội 18 người là tUWPgxywIzS7.png 

Số cách chọn 8 em từ khối 12 và khối 11 là DycLqkhxh8N3.png

Số cách chọn 8 em từ khối 11 và khối 10 là e9m6li6ERnkE.png

Số cách chọn 8 em từ khối 10 và khối 12 là OsJOO5eaALdg.png

Vậy số cách chọn để có các em ở cả 3 khối là

bliKgd7EReuj.png

26 tháng 12 2017

Chọn C

+ Chia đều 16 đội vào 4 bảng có

+ Sắp xếp 3 đội của 3 lớp Toán vào 3 bảng khác nhau trong 4 bảng có A 4 3  cách.

Chọn 3 đội trong 13 đội còn lại để xếp vào bảng có đội lớp 10 Toán có C 13 3  cách.

Chọn 3 đội trong 10 đội còn lại để xếp vào bảng có đội lớp 11 Toán có C 10 3  cách.

Chọn 3 đội trong 7 đội còn lại để xếp vào bảng có đội lớp 12 Toán có C 7 3  cách.

Bốn đội còn lại xếp vào bảng còn lại.

Suy ra số cách chia đều 16 đội vào 4 bảng sao cho 3 đội của 3 lớp Toán nằm ở 3 bảng khác nhau là 

+ Xác suất cần tìm là: 

23 tháng 7 2017

+ Số cách chọn 6 học sinh bất kỳ từ 18 học sinh là.   C 18 6 = 18564

+ Tiếp theo ta đếm số cách chọn ra 6 học sinh từ các học sinh trên mà không có đủ cả ba khối. Khi đó có ba phương án như dưới đây.

Phương án 1: 6 học sinh được chọn thuộc vào khối 10 hoặc 11, số cách chọn là C 13 6 = 1716

Phương án 2: 6 học sinh được chọn thuộc vào cả hai khối 10 và 12, số cách chọn là C 12 6 - C 7 6 = 917

Phương án 3: 6 học sinh được chọn thuộc vào cả hai khối 11 và 12, số cách chọn là C 11 6 - C 6 6 = 461

Vậy số cách chọn 6 học sinh sao cho mỗi khối có ít nhất một học sinh là: 

18564 – (1716 + 917 + 461) = 15470.

chọn D.

NV
12 tháng 12 2021

Không gian mẫu: \(C_9^3.C_6^3\)

Chia 3 bạn nữ vào 3 tổ: \(3!\) cách

Xếp 6 bạn nam vào 3 tổ: \(C_6^2.C_4^2\) cách

Xác suất: \(P=\dfrac{3!.C_6^2.C_4^2}{C_9^3.C_6^3}\)

13 tháng 9 2019

Chọn A.

Chọn ngẫu nhiên 5 học sinh trong số 48 học sinh có:LTT5WMETgEch.png

- Gọi A là biến cố "chọn 5 học sinh trong đó có ít nhất một học sinh nữ" thì sPa2hy2l4evR.png là biến cố "chọn 5 học sinh mà trong đó không có học sinh nữ".

- Ta có số kết quả thuận lợi cho 0dGcDGiowE8W.png là:

12 tháng 9 2017

Đáp án A

Chọn 3 tiết mục bất kỳ có: Ω = C 9 3 = 84  cách.

Gọi A là biến cố: “ba tiết mục được chọn có đủ cả ba khối và đủ cả ba nội dung”.

Khối 10 chọn 1 tiết mục có 3 cách

khối 11 chọn 1 tiết mục khác khối 10 có 2 cách

tương tự khối 12 có 1 cách

Ta có: Ω A = 3 . 2 . 1 = 6  cách

Vậy  P = 6 84 = 1 14