K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2023

...\(a=\left[\left(\left(50-1\right):1+1\right):2\right]\left(50+1\right)=25.51=1275\)

\(...a1=\left[\left(\left(98-35\right):3+1\right):2\right]\left(35+98\right)=11.133=1463\)

14 tháng 3 2019

\(A=1.3+2.4+3.5+....+48.50\)

\(A=1.\left(1+2\right)+2.\left(3+1\right)+3.\left(4+1\right)+....+48.\left(49+1\right)\)

\(A=1.2+1+2.3+2+3.4+3+....+48.49+48\)

\(A\left(=1.2+2.3+...+48.49\right)+\left(1+2+...+48\right)\)

tự làm tiếp :))

p/s: ck iu :3 

19 tháng 3 2020

A=(48.50.51-1.3.0):3=.....

11 tháng 12 2019

a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)

                                                     \(=1+\left(-1\right)\)

                                                     \(=0\)

b) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}=\left(\frac{11}{24}+\frac{13}{24}\right)+\left(-\frac{5}{41}-\frac{36}{41}\right)+0,5\)

                                                                    \(=1+\left(-1\right)+0,5\)

                                                                    \(=0,5\)

_Học tốt nha_

11 tháng 12 2019

a, \(\frac{15}{12}\)\(\frac{5}{13}\)\(\frac{3}{12}\)-\(\frac{18}{13}\)

\(\frac{5}{4}\)\(\frac{5}{13}\) - \(\frac{1}{4}\) - \(\frac{18}{13}\)

\(\left(\frac{5}{4}-\frac{1}{4}\right)\)\(\left(\frac{5}{13}-\frac{18}{13}\right)\)

= 1 - 1 = 0

b, \(\frac{11}{24}\)\(\frac{5}{41}\)\(\frac{13}{24}\)+ 0,5 - \(\frac{36}{41}\)

\(\left(\frac{11}{24}+\frac{13}{24}\right)\)\(\left(\frac{5}{41}+\frac{36}{41}\right)\)+ 0,5

= 1 - 1 + 0,5 = 0,5

c,  \(\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)

=\(\left(-\frac{3}{4}+\frac{2}{3}\right).\frac{11}{5}+\left(-\frac{1}{4}+\frac{1}{3}\right).\frac{5}{11}\)

\(\frac{11}{5}.\left(-\frac{3}{4}+\frac{2}{3}-\frac{1}{4}+\frac{1}{3}\right)\)

\(\frac{11}{5}.\left[\left(-\frac{3}{4}-\frac{1}{4}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)\right]\)

=  \(\frac{11}{5}.\left[\left(-1\right)+1\right]\)

= 0

d, \(\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)

\(9.\left(0,75-0,25\right)-2\)

= 9. 0,5 - 2 = 2,5

e, \(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)

\(\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)

= -1 + 1 - \(\frac{1}{2}\)

\(-\frac{1}{2}\)

14 tháng 4 2017

2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Ví dụ: 2x3y2,...

3. Để cộng (hay trừ) ác đơn thức đồng dạng, ta cộng ( hay trừ ) các hệ số với nhau và giữ nguyên phần biến.

4. Khi đa thức P (x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức đó.

Câu 1 mình không biết. 

9 tháng 5 2021

Câu 1:

2x^3y^2

3x^6y^3

4x^5y^9

6x^8y^3

7x^4y^8

Câu 2:

Hai đơnthức đồng dạng là hai đơn thức có hệ số khác không và cùng phần biến

VD:

2xyz^3 và 3xyz^3

Câu 3:

Để cộng trừ hai đơn thức đồng dạng ta giữ nguyên phần biến và cộng trừ phần hệ số

Câu 4:

Số a được gọi là nghiệm của đa thức khi

Nếu tại x=a đa thức p(x) có giá trị bằng không thì ta nói a là một nghiệm của đa thức p(x)

12 tháng 12 2019

\(a.=\frac{3}{15}+\frac{-10}{15}\)

\(=-\frac{7}{15}\)

\(b.=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)

\(=1+\left(-1\right)\)

\(=0\)

12 tháng 12 2019

\(c.=\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)

\(=-1+1-\frac{1}{2}\)

\(=0-\frac{1}{2}\)

\(=-\frac{1}{2}\)

\(d.=\frac{5}{6}.\left(18\frac{2}{3}-6\frac{2}{3}\right)\)

\(=\frac{5}{6}.12\)

\(=10\)

4 tháng 7 2015

\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)

Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)

(101-5):4+1=25(số hạng)

=>A=25.(3+32+33+34)=25.120=3000

11 tháng 8 2018

\(A=\frac{-2}{9}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{15}+\frac{1}{57}+\frac{1}{3}+\frac{-1}{36}\)

\(A=\left(\frac{-2}{9}+\frac{-3}{4}+\frac{1}{3}+\frac{-1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{57}\)

\(A=\left(\frac{-8}{36}+\frac{-27}{36}+\frac{12}{36}+\frac{-1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)+\frac{1}{57}\)

\(A=\frac{-2}{3}+\frac{2}{3}+\frac{1}{57}\)

\(A=\frac{-38}{57}+\frac{38}{57}+\frac{1}{57}\)

\(A=\frac{1}{57}\)