K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

Gọi thương của phép chia 4x3+ax+b và x-2 là A(x)

\(\Rightarrow4x^{3^{ }}+ax+b=\left(x-2\right).A\left(x\right)\)

Vì đẳng thức luôn đúng với mọi x nên ta thay x =2 vào ta được

\(\Rightarrow32+2a+b=0\)

⇒ 2a + b = -32

Gọi thương của phép chia 4x3+ax+b và x+1 là B(x)

\(\Rightarrow4x^{3^{ }}+ax+b=\left(x+1\right).B\left(x\right)\)

Vì đẳng thức luôn đúng với mọi x nên ta thay x =-1 vào ta được

\(\Rightarrow-4-a+b=0\)

\(\Rightarrow-a+b=4\)

\(\left[{}\begin{matrix}2a+b=-32\\-a+b=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)

⇒ 2a - 3b

= 2.(-12) - 3 .(-8)

= 0

5 tháng 12 2017

Áp đụng định lý bezout ta có:

Một đa thức f(x) mà muốn chia hết cho một đa thức x-a thì f(a) phải =0

Dễ dàng chứng minh được điều trên.

Ta co:f(x)=g(x).(x-a)+r

Muốn chia hết =>r=0=>f(a)=g(x).(a-a)+0=0. Do đó có điều phải c/m.
Áp dụng vào:

Để f(x)=4x^3+ax+b chia hết cho x-2 và x+1

=>f(2)=0=>4.2^3+2a+b=0=>2a+b=-32

f(-1)=0=>4.(-1)^3-a+b=0=>-a+b=4

Kết hợp 2 điều trên tạo thành hpt bậc nhất 2 ẩn

=>a=-12,b=-8

Do đó: f(x)=4x^3-12x-8

=> 2a-3b = -12 . 2 - (-8)3 = -24 + 24 = 0

1. Đa thức chia có bậc là 2 nên bậc của đa thức dư không vượt quá 1

Gỉa sử \(f_{\left(x\right)}\) chia \(x^2-1\) được thương là \(g_{\left(x\right)}\) và số dư là ax+b \(\Rightarrow f_{\left(x\right)}=x^{100}+x^{99}+x^{98}+...+x^2+1=\left(x^2-1\right).g_{\left(x\right)}+\left(ax+b\right)\)

Ta có: \(f_{\left(1\right)}=1^{100}+1^{99}+...+1^2+1=\left(1^2-1\right).g_{\left(1\right)}+\left(a.1+b\right)\)

\(\Rightarrow a+b=101\) (1)

\(f_{\left(-1\right)}=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)+1=\left[\left(-1\right)^2-1\right].g_{\left(-1\right)}+\left[a\left(-1\right)+b\right]\)

\(\Rightarrow-a+b=1\) (2)

Từ (1) và (2) \(\Rightarrow a+b-a+b=102\Rightarrow2b=102\Rightarrow b=51\)

\(\Rightarrow-a+51=1\Rightarrow-a=-50\Rightarrow a=50\)

Vậy đa thức dư là 50x+51

2. Đa thức \(4x^3+ax+b\) chia hết cho các đa thức x-2 và x+1, mà x-2 và x+1 không có nhân tử chung có bậc khác 0 nên \(4x^3+ax+b⋮\left(x-2\right)\left(x+1\right)=x^2-x-2\)

Đặt \(4x^3+ax+b=\left(x^2-x-2\right)\left(4x+c\right)\)

\(=4x^3+cx^2-4x^2-cx-8x-2c\)

\(=4x^3+\left(c-4\right)x^2-\left(c+8\right)x-2c\)

\(\Rightarrow\left\{{}\begin{matrix}c-4=0\\c+8=-a\\-2c=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c=4\\a=-12\\b=-8\end{matrix}\right.\Rightarrow2a-3b=2.\left(-12\right)-3.\left(-8\right)=0\)

Vậy 2a-3b=0

14 tháng 11 2022

a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)

=>a-10=0

=>a=10

b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)

=>2-a=0 và b-a+1=0

=>a=2; b=a-1=2-1=1

20 tháng 11 2022

Bài 3:

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)

\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)

Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0

=>a=-1/3; b=2a+14=-2/3+14=40/3

a) \(8x^3-18x^2+x+6\)

\(=8x^3-16x^2-2x^2+4x-3x+6\)

\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(8x^2-2x-3\right)\)

\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)

\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)

\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)

=> g(x) có 3 nghiệm là

x-2=0 <=> x=2

2x+1=0 <=> x=-1/2

4x-3=0 <=> x=3/4

vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}

b) tự làm đi (mk ko bt làm)

10 tháng 12 2017

easy