Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a5-a=a(a4-1)=a[(a2)2-1]=a(a2-1)(a2+1)
=a(a-1)(a+1)(a2-4+5)=a(a-1)(a+1)(a2-4)+5a(a-1)(a+1)
=(a-2)(a-1)a(a+1)(a+2)+5a(a-1)(a+1)
+Số hạng đầu là tích 2 SN liên tiếp nên chia hết cho 30
+Số hạng thứ 2 có tích 3 SN liên tiếp chia hết cho 6 nên chia hết cho 30
=>a5-a chia hết cho 30 (đpcm)
a)
x^4-x^3+6x^2-x +a x^2-x+5 x^2+1 x^2 -x +a a-5
Để \(x^4-x^3+6x^2-x+a⋮x^2-x+5\) thì \(a-5=0\Rightarrow a=5\)
b)
3n^3+10n^2 -5 3n+1 n^2+3n-1 9n^2 -5 -3n-5 -4
Để \(3n^3+10n^2-5⋮3n+1\) thì \(3n+1⋮-4\)
\(\Rightarrow3n+1\inƯ\left(-4\right)\)
\(\Rightarrow3n+1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow3n\in\left\{-5;-3;-2;0;1;3\right\}\)
\(\Rightarrow n\in\left\{-\dfrac{5}{3};-1;-\dfrac{2}{3};0;\dfrac{1}{3};1\right\}\)
Ta có: 30=2.3.5
a5-a=a(a4-1)=a(a2+1)(a2-1)=a(a+1)(a-1)(a2+1)=a(a+1)(a-1)(a2-4)+5a(a+1)(a-1)=a(a+1)(a-1)(a+2)(a-2)+5a(a+1)(a-1)
Vì a(a+1)(a-1)(a+2)(a-2) chia hết cho2;3;5( tích 5 số tự nhiên liên tiếp)
5a(a+1)(a-1) chia hết cho 2;3;5
Suy ra a(a+1)(a-1)(a+2)(a-2)+5a(a+1)(a-1) chia hết cho 5;2;3
Hay a5-a chia hết cho 30 (đpcm)