K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Có \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5\text{a}\left(a-1\right)\left(a+1\right)\)
Có a(a-1)(a+1)(a-2)(a+2) là 5 số tự nhiên liên tiếp => có 1 số chia hết cho 5, 1 số chia hết cho 3 và 1 số chia hết cho 2 => chia hết cho 30
a(a-1)(a+1) là 3 số tự nhiên liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3 => 5a(a-1)(a+1) chia hết cho 30 
vậy tổng của chúng chia hết cho 30
=> đpcm

17 tháng 7 2017

 an+5-an+1 = an.a5-an.a = an.a(a4-1) =  an.a.(a2 - 1).(a2 + 1)= an.a.(a-1)(a+1).(a2 + 1) 

Do a.(a-1)(a+1) chia hết cho 2;3 => an.a.(a-1)(a+1).(a2 + 1) chia hết cho 6 =>  an+5-an+1 chia hết cho 6 (1)

an+5-an+1 = an(a5-a) = an(a5-1)

=> Do (a5-1) chia hết cho 5 ( định lí fermat nhỏ) => an(a5-1) chia hết cho 5 =>  an+5-an+1 chia hết cho 5

Từ (1) và (2) => an+5-an+1 là B(5;6) 

Mà BCNN(5;6) = 30 => (an+5-an+1 ) chia hết cho 30

28 tháng 11 2016

\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Trước hết, \(a\left(a-1\right)\left(a+1\right)\)là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 (1)

Lại có \(a^5=a^{4.1}.a\)

TH1 : a chẵn, coi chữ số tận cùng của a là n \(\Rightarrow a^5=a^{4.1}.a=\left(...6\right).n=\left(...n\right)\)(Vì 6 nhân với chữ số chẵn nào cũng có tận cùng là chữ số đó )

TH2 : a lẻ, coi chữ số tận cùng của a là m \(\Rightarrow a^5=a^{4.1}.a=\left(...1\right).m=\left(...m\right)\)

Do đó \(a^5\)và \(a\)luôn có cùng chữ số tận cùng

\(\Rightarrow a^5-a\)chia hết cho 10 (2)

Từ (1)(2)\(\Rightarrow a^5-a\in BC\left(3;10\right)=B\left(30\right)\) ( Vì ƯCLN(3;10)=1 )

Vậy ...

13 tháng 7 2019

Bài 2 thôi em dùng đồng dư cho chắc:v

a) \(21^2\equiv41\left(mod200\right)\Rightarrow21^{10}\equiv41^5\equiv1\left(mod200\right)\)

Suy ra đpcm.

b) \(39^2\equiv1\left(mod40\right)\Rightarrow39^{20}\equiv1\left(mod40\right)\)

Mặt khác \(39^2\equiv1\left(mod40\right)\Rightarrow39^{12}\equiv1\Rightarrow39^{13}\equiv39\left(mod40\right)\)

Suy ra \(39^{20}+39^{13}\equiv1+39\equiv40\equiv0\left(mod40\right)\)

Suy ra đpcm

c) Do 41 là số nguyên tố và (2;41) = 1 nên:

\(2^{20}\equiv1\left(mod41\right)\) suy ra \(2^{60}\equiv1\left(mod41\right)\)

Dễ dàng chứng minh \(5^{30}\equiv40\left(mod41\right)\)

Suy ra đpcm.

d) Tương tự

18 tháng 10 2019

Đặt A = n⁵ - n = n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (\(⋮6\), vì \(⋮2,3\)) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
Do \(\left\{{}\begin{matrix}\text{n(n-2)(n+2)(n - 1)(n + 1) ⋮ 5 }\\\text{5n(n - 1)(n + 1) ⋮ 5 }\end{matrix}\right.\)

\(\Rightarrow\text{ n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) }⋮5\)
\(\Rightarrow A⋮5\) (2)
Từ (1)(2)=> \(A⋮30\) do (5,6)=1

11 tháng 3 2017

\(A=a^5-a=a.\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=B\left(a^2+1\right)\)B là 3 số tự nhiên liên tiếp \(\left\{{}\begin{matrix}B⋮2\\B⋮3\\B⋮6\end{matrix}\right.\) ta cần c/m A chia cho 5

\(A=B\left(n^2+1\right)=B\left[\left(n^2-4\right)+5\right]=B\left(n^2-2^2\right)=B\left(n-2\right)\left(n+2\right)+5B=C+5B\)C là tích 5 số tự nhiên liên tiếp: \(\left\{{}\begin{matrix}C⋮5\\5B⋮5\end{matrix}\right.\)\(\Rightarrow A⋮5\)

\(\left\{{}\begin{matrix}A⋮5\\A⋮6\end{matrix}\right.\)\(\Rightarrow A⋮30\) => dpcm

13 tháng 1 2016

Có a2 - 1 = (a+1)(a-1) 

Xét tích (a-1)a(a+1) chia hết cho 3

Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3          (1)

Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)

Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8            (2)

Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )

22 tháng 1 2016

a^4-1 = (a-1)(a+1)(a^2+1)

Nếu a chia 5 du 1 suy ra n-1 chia het cho 5

Nêu a chia 5 du 2 suy ra n^2 chia 5 du 4 suy ra n^2+1 chia het cho 5  (dùng đồng dư)

tương tự với a chia 5 du 3,4

vay a^4-1 luôn chia het cho 5 

 

CM chia hết 7 là xong 

Nêu a chia 7 du 1 ,5,6 thay nhu tren vao a^4-1 la xong 

Voi a chia 7 du 2,3,4

Neu a chia 7 du 2 thi a^4 chia 7 du 16 ; a^2 chia 7 du 4<=>15a^2 chia 7 du 60

suy ra a^4+15a^2+1 chia 7 du 16+60+1=77 chia het cho 7

Neu a chia 7 du 3, 4 tươ]ng tu