K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

Câu vào theo link này nhé : https://olm.vn/hoi-dap/tim-kiem?q=t%C3%ACm+m+%C4%91%E1%BB%83+ph%C6%B0%C6%A1ng+tr%C3%ACnh+v%C3%B4+nghi%E1%BB%87m:a)+2mx-m=1+xb)(m+1)x-x-2+m=0c)2mx-3=4x&id=82264

9 tháng 3 2020

Ta có : 2mx - m = x + 1
=> 2mx - x = m + 1
=> x(2m - 1) = m + 1
=> 2m - 1 = 0 và m + 1 ≠ 0
=> m = \(\frac{1}{2}\) và m ≠ −1
Vậy để phương trình trên vô nghiệm thì m = \(\frac{1}{2}\)

ko biết đúng hya sai đâu nha

20 tháng 12 2017

Tự Hỏi Tự Trả Lời

20 tháng 12 2017

[x² - 2mx - 4(m²+1)].[x² - 4x - 2m(m²+1)] = 0 (1) 
pt (1) tương đương với tuyển hai pt: 
[x² - 2mx - 4(m²+1) = 0 (*) 
[x² - 4x - 2m(m²+1) = 0 (**) 
- - - 
∆' (*) = m² + 4(m²+1) = 5m² + 1 > 0 với mọi m => (*) luôn có hai nghiệm phân biệt 
∆' (**) = 4 + 2m(m²+1) = 2(m+1)(m² - m + 2) 
Thấy m² - m + 2 = (m - 1/2)² + 7/4 > 0 với mọi m 
=> (**) có nghiệm khi và chỉ khi ∆'(**) ≥ 0 <=> m+1 ≥ 0 <=> m ≥ -1 
- - - 
Trước tiên ta xét trường hợp (*) và (**) có nghiệm chung khi đó ta có hệ: 
{x² - 2mx - 4(m²+1) = 0 (1*) 
{x² - 4x - 2m(m²+1) = 0 (2*) 
trừ vế ta được: (2m-4)x - 2m(m²+1) + 4(m²+1) = 0 
<=> (m-2)x - (m-2)(m²+1) = 0 
nếu m = 2, khi đó cả hai pt (1*) và (2*) thành x² - 4x - 20 = 0 
chứng tỏ (*) và (**) trùng nhau nên (1) chỉ có 2 nghiệm, không thỏa yêu cầu 
Vậy m # 2, từ trên => x = m²+1 ; thay vào (1*) ta có: (m²+1)² - 2m(m²+1) - 4(m²+1) = 0 
<=> m²+1 - 2m - 4 = 0 (do m²+1 > 0 ) <=> m² - 2m - 3 = 0 <=> m = -1 hoặc m = 3 
- - - các bước chhuẩn bị đã xong, giờ thì bắn thôi - - - 
(1) có 3 nghiệm phân biệt khi và chỉ khi (**) có nghiệm kép khác với hai nghiệm của (*), hoặc (**) có hai nghiệm pb trong đó có một nghiệm trùng với một nghiệm của (*) 
* TH1: (**) có nghiệm kép khi và chỉ khi m = -1 , nhưng khi đó 
(*) và (**) lại có nghiệm chung tức nghkép này đã bị trùng với nghiệm của (*) 
=> (1) có 2 nghiệm - không thỏa 
* TH2: (**) có hai nghiệm pbiệt, trong đó 1 nghiệm trùng với nghiệm của (*) 
=> ta phải có: m > -1 và m = -1 hoặc m = 3 => m = 3 

**Đảo lại khi m = 3: (*) có nghiệm là x = -4 ; x = 10; (**) có 
nghiệm là: x = -6 ; x = 10 
=> (1) có đúng 3 nghiệm là x = -6; x = -4 ; x = 10 

Tóm lại: ta chọn được m = 3 

Tk cho  mk, mk tk lại

24 tháng 3 2023

6\(x\) + 2m = 2m\(x\) + 2

6\(x\) - 2m\(x\) = 2 - 2m

2\(x\)(3 - m) = 2( 1 -m)

 \(x\)(3-m)    =  1 - m

 \(x\)            = \(\dfrac{1-m}{3-m}\)

3 - m # 0

Pt có nghiệm nguyên dương khi và chỉ khi

1 - m ⋮ 3- m và ( 1-m)(3-m) > 0

3 - m - 2 ⋮ 3 -m

           2 ⋮ 3 - m

3 - m \(\in\) { -2; -1; 1; 2}

     m ∈ { 5; 4; 2;  1}

Với m = 5 => (1-5)(3-5) = 8 > 0( thỏa mãn)

Với m = 4 => ( 1-4)(3-4) = 3 > 0 (thỏa mãn)

Với m = 2 => ( 1-2) (3-2) = -1 < 0 (loại)

Với m = 1 => ( 1-1)(3-1) =0 (loại)

Vậy m \(\in\) {4; 5}

25 tháng 4 2015

Phương trình vô nghiệm có dạng 0x = a (với \(a\in R;a\ne0\))

Ta có : 2mx - m = x + 1

<=> 2mx - x = m + 1

<=> x(2m - 1) = m + 1

=> 2m - 1 = 0 và \(m+1\ne0\)

<=> m = 0,5 và \(m\ne-1\)

Vậy để phương trình trên vô nghiệm thì m = 0,5

(Mình ko chắc lắm, nếu sai mong bạn thông cảm)

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4