Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ: \(cos2x\ne0\Rightarrow2x\ne k\frac{\pi}{2}\Rightarrow x\ne\frac{k\pi}{4}\)
2/ ĐKXĐ:
\(\sqrt{2-2cosx}\ne2\Rightarrow2-2cosx\ne4\)
\(\Rightarrow cosx\ne-1\Rightarrow x\ne\pi+k2\pi\)
3/ ĐKXĐ: \(sin3x\ne0\Rightarrow3x\ne k\pi\Rightarrow x\ne\frac{k\pi}{3}\)
Khác nhau bạn
Ở câu 3, \(cot3x\) xác định nên \(sin3x\ne0\)
\(1-\sqrt{1+sin3x}\ne0\Rightarrow1+sin3x\ne1\Rightarrow sin3x\ne0\)
Cả 2 điều kiện xác định là cot3x xác đinh và mẫu xác định đều giống nhau là \(sin3x\ne0\)
1. \(sin\left(\dfrac{\pi}{3}-x\right)\ne0\Leftrightarrow\dfrac{\pi}{3}-x\ne k\pi\Leftrightarrow x\ne\dfrac{\pi}{3}-k\pi\)
2. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
3. \(\sqrt{1+sinx}-\sqrt{2}\ge0\Leftrightarrow1+sinx\ge2\Leftrightarrow sinx\ge1\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
4. \(\sqrt{2-2cosx}-2\ne0\Leftrightarrow2-2cosx\ne4\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne\pi+k2\pi\)
5. \(1-\sqrt{1+sin3x}\ne0\Leftrightarrow sin3x\ne0\Leftrightarrow3x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{3}\)
Ít nhất thì bạn cũng phải nêu yêu cầu của đề bài là làm gì chứ bạn :)
Điều kiện: 3x - 1 ≠ kπ ∀ k ∈ Z
Mọi giá trị thuộc họ nghiệm đều thỏa mãn điều kiện xác định.
Vậy phương trình có họ nghiệm
cot3x = tan2x
đkxđ: \(\left\{{}\begin{matrix}sin3x\ne0\\cos2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{3}\\x\ne\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)(k\(\in\)Z)
\(\Leftrightarrow\frac{cos3x}{sin3x}=\frac{sin2x}{cos2x}\)
\(\Leftrightarrow cos3x.cos2x=sin3x.sin2x\)
\(\Leftrightarrow cos3x.cos2x-sin3x.sin2x=0\)
\(\Leftrightarrow cos\left(3x+2x\right)=0\)
<=> \(5x=\frac{\pi}{2}+k\pi\)
<=> \(x=\frac{\pi}{10}+\frac{k\pi}{5}\)