Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét các khoản \(\hept{\begin{cases}x< -3\\4>x\ge\\x\ge4\end{cases}-3}\)
Mỗi khoản sẽ có 1 phương trình sau khi giải so sánh với điều kiện tương ứng sẽ ra nghiệm cần tìm
\(\hept{\begin{cases}4-x=-x-3-2x\\x-4=x+3-2x\\x-4=x+3-2x\end{cases}}\)
Ta có: 160 + x và 240 - x chia hết cho x
Vì x chia hết cho x nên 160 và 240 chia hết cho x
ƯC (160; 240) = {1;2;4;5;...;80}
Vì x lớn nhất nên x = 80.
do 24 chia hết cho x,36 chia hết cho x,160 chia hết cho x
suy ra x thuộc ƯC(24,36,160)
Mà x lớn nhất nên x=ƯCLN(24,36,160)=8
Vậy x=8
2/3 x ( 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/70.73 - 2x = 1
2/3 x ( 1 - 1/4 + 1/4 - 1/7 + ... + 1/70 - 1/73 ) - 2x = 1
2/3 x ( 1- 1/73 ) - 2x = 1
2/3 x 72/73 - 2x = 1
48/73 - 2x = 1
2x = 48/73 - 1
2x = -25/73
x = -25/73 : 2
x = -25/146
Vậy x = -25/146
Tk nha !!
x+xy+x=4
<=>2x+xy=4
<=>x(y+2)=4
=>\(\hept{\begin{cases}x\inƯ\left(4\right)\\y+2\inƯ\left(4\right)\end{cases}}\)
Ta có bảng sau
x | 1 | 2 | 4 | -1 | -2 | -4 |
y+2 | 4 | 2 | 1 | -4 | -2 | -1 |
x | 1 | 2 | 4 | -1 | -2 | -4 |
y | 2 | 0 | -1 | -4 | -4 | -3 |
Vậy...
câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)
câu .2
a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có
\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)
b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có
\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)
c. ta có \(a+b=a-3+b-4+7\)
ta có a-3 và b-4 chia hết cho 5 còn 7 chia 5 dư 2
vậy a+b chia 5 dư 2..
Ta có : 2x + 19 \(⋮\)x + 2
\(\Rightarrow\)2 . ( x + 2 ) + 15 \(⋮\)x + 2
\(\Rightarrow\)x + 2 \(\in\)Ư( 15 ) = { 1 ; 3 ; 5 ; 15 }
Ta lập bảng :
Vậy : x \(\in\){ 1 ; 3 ; 13 }
Ta có: (2x \(+\)19) \(⋮\)(x \(+\)2)
\(\Rightarrow\)(2x \(+\)4 \(+\)15 )\(⋮\)(x \(+\)2)
\(\Rightarrow\)(2 (x \(+\)2) \(+\)15) \(⋮\)(x \(+\)2)
Vì 2 (x \(+\)2) \(⋮\)(x \(+\)2)
\(\Rightarrow\)15 \(⋮\)x + 2
Mà x \(\in\)\(ℕ\)\(\Rightarrow\)x + 2 \(\ge\)2 ; x + 2\(\in\)\(ℕ^∗\)
\(\Rightarrow\)x + 2 \(\in\){3;5;15}
\(\Rightarrow\)