Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{bc+ac+ab}{abc}\)
Vì \(\frac{bc+ac+ab}{abc}\)= 1 nên bc + ac + ab = abc. Suy ra a = 1 thì b = 2, c = 3 hoặc b = 3, c = 2; a = 2 thì b = 1, c = 3 hoặc b = 3, c = 1; a = 3 thì b = 2, c = 1 hoặc b = 1, c = 2
\(25.\left(\frac{bc+ab+ac}{abc}\right)+351\ge88.\left(a^2+b^2+c^2\right)\)
\(25\left(\frac{bc+ab+ac}{abc}\right)+351=25.abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\right)+351.abc\ge88.\left(a^2+b^2+c^2\right)\)
25.( bc+ ac + ab )+ 351 . abc \(\ge88abc\left(a^2+b^2+c^2\right)\)
Đến đây bạn tự làm tiếp nha ! Mình cũng không chắc về bài này cho lắm
BĐT\(\Leftrightarrow\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(a+c\right)}+\frac{abc}{c^3\left(a+b\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{c}.\frac{1}{a}+\frac{1}{c}.\frac{1}{a}+\frac{1}{b}}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\). Áp dụng BĐT: AM-GM ta có:
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
\(\frac{b^2}{a+b}+\frac{a+c}{4}\ge2\sqrt{\frac{b^2}{a+b}.\frac{a+b}{4}}=b\)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}+\frac{a+b}{4}}=c\)
Cộng theo vế 3 BĐT trên ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
hay \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\)
Dấu bằng = xảy ra khi a = b = c = 1
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\Rightarrow xyz=1;x>0;y>0;z>0\)
Ta cần chứng minh bất đẳng thức sau : \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức Bunhiacopxki cho 2 bộ số :
\(\left(\sqrt{y+z};\sqrt{z+x};\sqrt{x+y}\right);\left(\frac{x}{\sqrt{y+z}};\frac{y}{\sqrt{z+x}};\frac{z}{\sqrt{x+y}}\right)\)
Ta có : \(\left(x+y+z\right)^2\le\left(x+y+z+x+y+z\right)A\)
\(\Rightarrow A\ge\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\left(Q.E.D\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=1\Leftrightarrow a=b=c=1\)
\(\frac{1}{a}+\frac{1}{b}=\frac{5}{9}\)
Mà \(\frac{5}{9}=\frac{10}{18}=\frac{1}{18}+\frac{9}{18}=\frac{1}{18}+\frac{1}{2}\)
Vậy a = 18 và b = 2 hoặc a = 2 và b = 18.
\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)
Tương tự:
\(\sqrt{\frac{b}{c+a}}\le\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\le\frac{2c}{a+b+c}\)
\(\Rightarrow LHS\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Tuy nhiên đẳng thức ko xảy ra :p
a) \(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left[\left(a+\frac{1}{4}\right)+\left(b+\frac{1}{4}\right)\right]\)\(\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)=a\sqrt{b}+b\sqrt{a}\)
Theo đề bài ta có \(\frac{a}{b}< 1\).
\(\Rightarrow\frac{a+m}{b+m}< 1\)(vì \(\frac{a}{b}< 1\))
Khi \(\frac{a+m}{b+m}< 1\)ta có \(\frac{a}{b}+m\)
\(\Leftrightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có :
a > b => \(\frac{1}{a}< \frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}< 0\)
a > b => a - b > 0 \(\Rightarrow\frac{1}{a-b}>0\)
Từ 2 ý trên và theo giả thuyết đề bài thì không tồn tại 2 giá trị a,b > 0 thõa mãn
Bỏ chỗ a>b đi