Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt $t=e^x$ thì $dt=e^xdx$ nên $dx=\dfrac{1}{t}dt$
\(I=\int_2^3 \dfrac{1}{t(t-1)}dt=\int_2^3 \left(\dfrac{1}{t-1}-\dfrac{1}{t}\right)dt=\ln|t-1|\Big|_2^3-\ln |t|\Big|_2^3=2\ln2-\ln3\)
\(I=\int\limits^{\ln3}_1\left(x^2-2x\right)de^x=\left(x^2-2x\right)e^x|^{\ln3}_1-\int\limits_1^{\ln3}e^xd\left(x^2-2x\right)=3\left(\ln^23-2\ln3\right)+e-2\int\limits^{\ln3}_1\left(x-1\right)e^xdx\)
\(\int\limits^{\ln3}_1\left(x-1\right)e^xdx=k\)
Lại có :
\(k=\int\limits^{\ln3}_1\left(x-1\right)de^x=\left(x-1\right)e^x|^{\ln3}_0-\int\limits^{\ln3}_0e^xd\left(x-1\right)=3\left(\ln3-1\right)-e^x|^{\ln3}_0=3\ln3-6+e\)
Do đó :
\(I=3\left(\ln^23-2\ln3\right)+e-2\left(3\ln3-6+e\right)=3\ln^23-12\ln3+12-e\)
Chọn B