Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 100 đến 199 có 19 số có chứa chữ số 5
Từ 200 đến 299 có 19 số chứa chữ số 5
Lập luận như vậy ta tìm ra được từ 100 đến 999 có số các số có chứa chữ số 5 là:
19 x 8 + 100 = 252 ( số)
( 100 ở đây là tính từ 500 đến 599 có 100 số chứa số 5 còn các hàng trăm không phải là 5 thì lập luận để tìm như trên)
Vậy có số các số có 3 chữ số mà trong mỗi số không có chữ số 5 là : 900 - 252 = 648 (số)
Số các số có 3 chữ số là 900 số
Trong đó các số không có chữ số 1 gồm có : 8 cách chọn chữ số hàng trăm, 9 cách chọn chữ số hàng chục, 9 cách chọn chữ số hàng đơn vị
Số các số có 3 chữ số không có chữ số 1 gồm
8x9x9=648(số)
Số các số có 3 chữ số có chữ số 1 có là
900-648=252( số)
Từ 100 đến 199 có 19 số có chứa chữ số 5
Từ 200 đến 299 có 19 số chứa chữ số 5
Lập luận như vậy ta tìm ra được từ 100 đến 999 có số các số có chứa chữ số 5 là:
19 x 8 + 100 = 252 ( số)
( 100 ở đây là tính từ 500 đến 599 có 100 số chứa số 5 còn các hàng trăm không phải là 5 thì lập luận để tìm như trên)
Vậy có số các số có 3 chữ số mà trong mỗi số không có chữ số 5 là : 900 - 252 = 648 (số)
Giả sử chữ số cần tìm có dạng \(\overline {abc} \)
Chữ số a là chữ số hàng trăm và là chữ số chẵn nên có 4 cách chọn (2, 4, 6, 8)
Chữ số c là chữ số hàng số hàng đơn vị và là chữ số lẻ nên có 5 cách chọn (1, 3, 5, 7, 9)
Chữ số b không có điều kiện ràng buộc nên có 10 cách chọn từ 10 chữ số bất kì
Áp dụng quy tắc nhân, ta có số số tự nhiên thỏa mãn yêu cầu là:
\(4.5.10 = 200\)
Vậy có 200 số tự nhiên có 3 chữ số, trong đó chữ số hàng trăm là chữ số chẵn, chữ số hàng đơn vị là chữ số lẻ.
a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.
a:
TH1: Trong 4 số có số 0
=>Số cách là: \(C^3_9\cdot3\cdot3\cdot2\cdot1=1512\left(cách\right)\)
TH2: ko có số 0
=>Số cách là: \(A^4_9=3024\left(cách\right)\)
=>Có 1512+3024=4536 cách
b: TH1: Có số 0
=>Có \(C^3_7\cdot5\cdot5\cdot4\cdot3\cdot2\cdot1=21000\left(cách\right)\)
TH2: ko có số 0
=>Có \(C^4_7\cdot6!=25200\left(cách\right)\)
=>Có 46200 cách
TH1: 2 chẵn 2 lẻ
=>Có \(C^2_5\cdot C^2_4\cdot2=120\left(cách\right)\)
TH2: 3 lẻ, 1 chẵn
=>Có \(C^3_5\cdot4\cdot4!=960\left(cách\right)\)
TH3: 4 lẻ
=>Có \(C^4_5\cdot4!=120\left(cách\right)\)
=>Có 120+960+120=1200 cách
Số đầu: 10000
Số cuối: 99999
Có :
( 99999 - 10000 ) : 1 + 1 = 90000 ( số có 5 chữ số)
Vậy có 900000 số có 5 chữ số
số đầu : 100000
số cuối 999999
Có:
( 999999 - 100000) : 1 + 1 = 900000( số có 6 CS)
Vậy có 900000 số có 6 chữ số