K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số cần tìm là \(\overline{abcdef}\)

TH1: 0,1,2 là 3 số cuối

=>\(\overline{abc012};\overline{abc210}\)

a có 6 cách

b có 5 cách

c có 4 cách

=>CÓ 6*5*4*2=240 cách

TH2: \(\overline{ab\left\{0,1,2\right\}f}\)

0,1,2 có 3!=6 cách

a có 5 cách

b có 4 cách

f có 3 cách

=>Có 360 cách

TH3: \(\overline{a\left\{0,1,2\right\}ef}\)

0,1,2 có 3!=6 cách

f có 2 cách

e có 5 cách

a có 4 cách

=>Có 6*3*5*4=360 cách

TH4: \(\overline{\left\{0,1,2\right\}def}\)

{0;1;2} có 4 cách

f có 3 cách

d có 5 cách

e có 4 cách

=>Có 4*3*5*4=240 cách

=>Có 120+120+360+360+240=1200 cách

7 tháng 5 2023

TH1 (012)def : chọn a từ (1,2) có 2 cách

chọn b từ (012)/(a) có 2 cách

chọn c từ (012)/(ab) có 1 cách

chọn f chẵn từ (4,6) có 2 cách

với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách

vậy có  2.2.1.4A2.2 số

TH2 a(012)ef 

xếp chỗ cho 3 số (012) có 3! cách

chọn f từ (4,6) có 2 cách 

chọn ae từ 4 số còn lại và xếp có 4A2 cách

 vậy có 3!.2.4A2 số 

TH3  ab(012)f

tương tự TH2

TH4 : abc(012):

chọn f chẵn từ (0,2)  có 2 cách

chọn e từ (012)/(a) có 2 cách

chọn d từ (012)/(ab) có 1 cách

với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách

vậy có 2.2.1.5A3 số 

tổng 4 TH ta có 

2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số

 

 

2 tháng 5 2023

a) Xét trường hợp các chữ số đều bình đẳng :

Số cách sắp xếp 2 chữ số lẻ  khác nhau từ A cho 4 vị trí :

\(C_3^1.C_4^1.C_2^1.C_3^1=72\)

Số cách sắp xếp 2 chữ số chẵn từ A cho 2 vị trí còn lại A : 

\(C_4^1.C_2^1.C_3^1.C_1^1=24\) 

=> Có tất cả : 72.24 = 1728 số 

Xét trường hợp cố định số 0 đứng đầu 

=> Số cách sắp xếp 2 chữ số lẻ từ A cho 3 vị trí :

\(C_3^1.C_3^1.C_2^1.C_2^1=36\)

Số cách sắp xếp 1 chữ số chẵn từ A cho vị trí còn lại :

\(C_3^1.C_1^1=3\)

=> Có tất cả : 1.36.3 = 108 số

=> Số các số thỏa mãn đề : 1728 - 108 = 1620 (số)

b) Gọi số thỏa mãn có dạng \(\overline{abcd}\)

TH1 a = 3 => b \(\in\left\{4;5;6\right\}\) hoặc b = 2

(*) \(b\in\left\{4;5;6\right\}\) => Số các số cần tìm : \(1.C_3^1.A_5^2=60\)

(*) b = 2 => Số các số cần tìm : \(1.1.1.C_2^1+1.1.1.C_4^1=6\)

TH1 có 66 số

TH2 \(a\in\left\{4;5;6\right\}\)

TH2 có : \(C_3^1.A_6^3=360\)

Vậy có tất cả 360 + 66 = 426

16 tháng 4 2023

Gọi số cần tìm là \(\overline{abcd}\)

TH1 : a = 6

Số cách chọn chữ số a : 1 cách

Số cách chọn chữ số b : 2 cách 

Số cách chọn chữ số c,d : \(A^2_6\)

=> Số các số lập được \(1.2.A^2_6\)

TH2 : a = 7 hoặc a = 8

=> Số các số là : \(2.A^3_7\)

Vậy có tất cả : \(P=1.2.A^2_6+2.A_7^3=480\) số

NV
11 tháng 3 2023

Số bất kì: \(6!-5!\) số

Xếp 0 và 5 cạnh nhau: 2 cách

Hoán vị bộ 05 với 4 chữ số còn lại: \(5!\) cách

Hoán vị bộ 05 với 4 chữ số còn lại sao cho 0 đứng đầu: \(4!\) cách

\(\Rightarrow2.5!-4!\) cách xếp sao cho 0 và 5 cạnh nhau

\(\Rightarrow6!-5!-\left(2.5!-4!\right)\) cách xếp thỏa mãn

11 tháng 3 2023

Anh chắc sẽ gắn bó với hoc24 lâu dài ạ anh, có toán khó em nhờ anh giúp. Cách của anh lại hay nữa. 

NV
18 tháng 3 2023

TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5

Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách

TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8

Chọn chữ số còn lại có 6 cách

Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách

\(\Rightarrow3.6.4=72\) số

Tổng: \(42+72=114\) số

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Từ 4 chữ số 0, 1, 2, 3:

- Hàng trăm có 3 cách chọn.

- Hàng chục có 3 cách chọn.

- Hàng đơn vị có 2 cách chọn.

Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.

b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 3 = 6 số có thể lập được.

- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 2 = 4 số có thể lập được.

Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.

NV
22 tháng 1 2024

Gọi số có 6 chữ số dạng \(\overline{abcdef}\)

- TH1: \(f=0\)

\(\Rightarrow\) Bộ abcde có \(A_9^5\) cách chọn và hoán vị

TH2: \(f\ne0\Rightarrow f\) có 4 cách chọn (từ các chữ số 2,4,6,8)

a có 8 cách chọn (khác 0 và f), bộ bcde có \(A_8^4\) cách chọn

\(\Rightarrow4.8.A_8^4\) số

Vậy tổng cộng lập được: \(A_9^5+4.8.A_8^4=68880\) số thỏa mãn

12 tháng 3 2023

mk là đag thắc mac ở cái khúc này nè 

sao là 4 cách á

em chưa lớp 8 chị ạ

16 tháng 3 2023

Gọi số cần lập là x = \(\overline{abc}\) (a;b;c có nghĩa) 

Do x chẵn và 2 chữ số 1;3 đứng cạnh nhau nên 

=> a có 2 cách chọn ; b có 1 cách chọn 

mà \(a\ne b\ne c\) ; x chẵn nên c có 3 cách chọn

Áp dụng quy tắc nhân 

Có : 2.1.3 = 6 số thỏa mãn yêu cầu