Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m\ne\pm1\)
ĐKXĐ: \(x\in\left[-2018;2018\right];x\ne0\)
Miền xác định của hàm là miền đối xứng
Để ĐTHS nhận Oty làm trục đối xứng \(\Leftrightarrow\) hàm chẵn
\(\Leftrightarrow\) Với mọi m ta phải có: \(f\left(-x\right)=f\left(x\right)\)
\(\Leftrightarrow\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\dfrac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\)
\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}=\left(-m^2-m+2\right)\sqrt{2018-x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-2=0\\-m^2-m+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=-2\end{matrix}\right.\)
1/ Để hàm số cắt Ox tại 2 điểm đối xứng qua gốc tọa độ \(\Rightarrow\left(m-1\right)x^2+2mx+3m+1=0\) có hai nghiệm phân biệt t/m \(x_1=-x_2\)
\(\Rightarrow\left\{{}\begin{matrix}a\ne0;\Delta'>0\\x_1+x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m^2-\left(m-1\right)\left(3m+1\right)>0\\\dfrac{-2m}{m-1}=0\end{matrix}\right.\) \(\Rightarrow m=0\)
2/ Để hàm số đồng biến trên \(\left(1;+\infty\right)\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}a=m-1>0\\\dfrac{-b}{2a}=\dfrac{-2m}{2\left(m-1\right)}< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>1\\\dfrac{2m-1}{m-1}>0\end{matrix}\right.\) \(\Rightarrow m>1\)
Pt hoành độ giao điểm:
\(\sqrt{2x^2-2x-m}-x-1=0\)
\(\Leftrightarrow\sqrt{2x^2-2x-m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2-2x-m=x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x-1=m\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 2 nghiệm pb \(x\ge-1\)
Từ đồ thị hàm \(y=x^2-4x-1\) ta thấy \(-5< m\le4\)
TH1 : Đồ thị hàm số y = 3mx2 - (m - 9)x + 8 - m2 có hai điểm phân biệt đối xứng nhau qua gốc tọa độ khi hàm số trên là hàm số lẻ trên tập xác định R
Khi đó f(x) + f(-x) = 0
⇒ 3mx2 + 3mx2 - (m - 9)x + 8- m2 + (m - 9)x - m2 + 8 = 0
⇒ 6mx2 + 16 = 0 (không có m)
có m nhé