Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng số dầu 2 thùng A và C và cũng là số dầu ở thùng B là :
120 : 2 = 60 ( lít )
Tổng số phần bằng nhau :
4 + 1 = 5 ( phần )
Số dầu lúc đầu ở thùng A là :
60 : 5 x 4 - 15 = 33 ( lít )
Số dầu lúc đầu ở thùng C là :
60 - 33 = 27 ( lít )
số dầu thùng B là:
120:2=60 lít
->tổng số dầu trong thùng A+C=60 lít
tổng số phần bằng nhau khi chuyển thùng C cho thùng A là:
4+1=5 phần
giá trị 1 phần là:
60:5=12 lít
số lít dầu ban đầu thùng A là:
12x4-15=33 lít
số lít dầu ban đầu thùng C là:
60-33=27 lít
đ/s: thùng A)33 lít
thùng B)60 lít
thùng C)27 lít
Số phần sau khi đã đổ vào thùng 3
1-2/3=1/3(phần)
Số lít mà thùng ba đã được đổ
123.1/3=41(lít)
Tổng số lít của thùng 1 và thùng 2
123-41=82(lít)
Số lít của thùng 1
(82-4):2=39(lít)
Số lít của thùng 2
82-39=43(lít)
Gọi a là thùng 1
Gọi b là thùng 2
Gọi c là thùng 3
Ta có được
a-5+9
b+5-7
c+7-9
=>39-5+9=43(lít)
=>43+5-7=41(lít)
=>41+7-9=39(lít)
Vậy:thùng 1 là 43 lít
thùng 2 là 41 lít
thùng. 3 là 39 lít
Sau khi đổ thì tổng số lít dầu vẫn là 123l. Ta có sơ đồ:
Thùng 1 Thùng 2 Thùng 3 } 123lít
Số lít dầu ở thùng 1 lúc sau là: (123 - 4 ) : 7 . 2 = 34 (l)
Vậy số lít dầu ở thùng 1 lúc đầu là: 34 - 9 + 5 = 30 (l)
Số lít dầu ở thùng 2 lúc sau là: 34 + 4 = 38 (l)
Vậy số lít dầu ở thùng 2 lúc đầu là: 38 + 7 - 5 = 40 (l)
Vậy số lít dầu ở thùng 3 lúc đầu là: 123 - 30 - 40 = 53 (l)
ĐS:
Số lít dầu của thùng A có là:
(43-7):2=18 lít dầu
Số lít dầu của thùng B có là:
(43+7):2=25 lít dầu
Đ/S:......
Lúc đầu, thùng B nhiều hơn thùng A số lít dầu là:
7 x 2 - 7 = 7 (lít)
Lúc đầu, thùng A có số lít dầu là:
(43 - 7) : 2 = 18 (lít)
Lúc đầu, thùng B có số lít dầu là:
43 - 18 = 25 (lít)
Đáp số: Thùng A: 18 lít
Thùng B: 25 lít
Gọi $x_1, x_2, x_3, x_4$ lần lượt là số lít dầu trong các thùng thứ nhất, thứ hai, thứ ba và thứ tư. Theo đề bài, ta có hệ phương trình sau:
$\begin{cases} x_1 + x_2 + x_3 + x_4 = 154 \ x_1 = \frac{2}{7}(x_1 + x_2 + x_3 + x_4) \ x_2 = \frac{4}{3}(x_1 + x_2 + x_3 + x_4) \ \frac{3}{5}x_3 - 5 = \frac{1}{3}(x_4 + 5) \end{cases}$
Để giải hệ phương trình này, ta sẽ áp dụng phương pháp khử Gauss để tìm nghiệm của hệ phương trình.
Bước 1: Chuyển hệ phương trình về dạng ma trận mở rộng:
$\left(\begin{array}{cccc|c} 1 & -\frac{2}{7} & -1 & 0 & 0 \ \frac{4}{3} & -1 & -1 & 0 & 0 \ 0 & 0 & \frac{3}{5} & -\frac{1}{3} & -\frac{10}{3} \ 1 & 1 & 1 & 1 & 154 \end{array}\right)$
Bước 2: Biến đổi ma trận sao cho phần tử ở cột đầu tiên và hàng đầu tiên là 1, các phần tử còn lại trong cột đầu tiên là 0:
$\left(\begin{array}{cccc|c} 1 & -\frac{2}{7} & -1 & 0 & 0 \ 0 & \frac{27}{7} & \frac{1}{3} & 0 & 0 \ 0 & \frac{6}{7} & \frac{9}{5} & -\frac{1}{3} & -\frac{10}{3} \ 0 & \frac{9}{7} & 2 & 1 & 154 \end{array}\right)$
Bước 3: Biến đổi ma trận sao cho các phần tử trong hàng thứ hai và cột thứ hai là 0, các phần tử còn lại trong cột thứ hai là 0:
$\left(\begin{array}{cccc|c} 1 & 0 & -\frac{19}{27} & 0 & 0 \ 0 & 1 & \frac{7}{81} & 0 & 0 \ 0 & 0 & \frac{67}{27} & -\frac{1}{3} & -\frac{10}{3} \ 0 & 0 & \frac{170}{27} & 1 & 154
Thùng 1 có 154*2/7=44(lít)
Thùng2 có 44*3/4=33 lít
Gọi số lít dầu thùng 3 và thùng 4 lần lượt là a,b
Theo đề, ta có: a+b=77 và 2/5(a-5)=1/3(b+5)
=>a+b=77 và 2/5a-1/3b=5/3+2=11/3
=>a=40 và b=37
Gọi số thùng dầu ở mỗi thùng lần lượt là a, b, c (lít; a, b, c ∈ N*)
Vì số dầu ở thùng thứ nhất bằng \(\dfrac{2}{3}\) số dầu ở thùng thứ ba, số dầu ở thừng thứ hai bằng \(\dfrac{3}{4}\) số dầu ở thùng thứ nhất, thùng thứ ba nhiều hơn thùng thứ hai 45 lít dầu, nên:
\(a=\dfrac{2}{3}c;b=\dfrac{3}{4}a\) và \(c-b=45\)
\(\Rightarrow c=\dfrac{3}{2}a\)
\(\Rightarrow c-b=\dfrac{3}{2}a-\dfrac{3}{4}a=45\)
\(\Rightarrow\dfrac{3}{4}a=45\Leftrightarrow a=60\) (tmđk)
Khi đó: \(\left\{{}\begin{matrix}b=\dfrac{3}{4}.60=45\\c=\dfrac{3}{2}.60=90\end{matrix}\right.\) (tmđk)
Vậy...