K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)

\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)

\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)

\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)

13 tháng 1 2017

(\(\frac{\left(x+y\right)^2}{x+y}\) -\(\frac{4xy}{x+y}\) ):\(\frac{\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\)

\(\frac{\left(x-y\right)^2}{x+y}\).\(\frac{x+y}{x-y}\) =x-y

29 tháng 3 2017

\(\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}-\dfrac{y}{y-x}-\dfrac{2xy}{x^2-y^2}\right)\)

\(=\left(\dfrac{x\left(x+y\right)-4xy+y\left(x+y\right)}{x+y}\right):\left(\dfrac{x\left(x-y\right)+y\left(x+y\right)-2xy}{x^2-y^2}\right)\)

\(=\dfrac{\left(x-y\right)^2}{x+y}:\dfrac{\left(x-y\right)^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}.\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^2}=x-y\)

f: x+y+z=3

=>x^2+y^2+z^2+2(xy+xz+yz)=9

=>2(xy+yz+xz)=6

=>xy+yz+xz=3

mà x+y+z=3

nên x=y=z=1

e: x^2+y^2+2=2(x+y)

=>(x+y)^2-2xy+2-2(x+y)=0

=>(x+y)(x+y-2)-2(xy-1)=0

=>x=y=1

13 tháng 7 2019

a) Ta có: A = (x + y)3 + 2x2 + 4xy + 2y2

    A = 73 + 2(x2 + 2xy + y2)

   A = 343 + 2(x + y)2

 A = 343 + 2. 72

  A = 343 + 98 = 441

b) B = (x - y)3 - x2 + 2xy - y2

=> B = (-5)3 - (x2 - 2xy + y2)

=> B = -125 - (x - y)2

=> B = -125 - (-5)2

=> B = -125 - 25 = -150

15 tháng 8 2018

Bạn sai ở dấu bằng thứ 4. Mình làm lại nhé.

      \(\left(x+y\right)^4+x^4+y^4\)

\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)

\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)

\(=x^4+4x^2y^2+y^4+4x^3y+4xy^3+2x^2y^2+x^4+y^4\)

\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)

\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)

\(=2.\left[\left(x^4+2x^3y+x^2y^2\right)+\left(2x^2y^2+2xy^3\right)+y^4\right]\)

\(=2.\left[\left(x^2+xy\right)^2+2.\left(x^2+xy\right).y^2+\left(y^2\right)^2\right]\)

\(=2.\left(x^2+xy+y^2\right)^2\)

Học tốt nhe.

8 tháng 2 2021

\(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\) \(\left(x,y\ne0;x\ne\pm y\right)\)

\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{y^2-x^2}.\dfrac{y^2-x^2}{4xy}\)

\(=\dfrac{1}{x^2+2xy+y^2}+\dfrac{1}{4xy}\)

\(=\dfrac{6xy+x^2+y^2}{4xy\left(x+y\right)^2}\)

Ta có: \(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\)

\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{4xy}\)

\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{4xy}\)

\(=\dfrac{4xy}{4xy\left(x+y\right)^2}+\dfrac{x^2+2xy+y^2}{4xy\left(x+y\right)^2}\)

\(=\dfrac{x^2+6xy+y^2}{4xy\left(x+y\right)^2}\)

Câu 2: 

\(B=x^2+2x+y^2-2x-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2\cdot7+37=49+37+14=100\)

Câu 3: 

\(C=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2\cdot5+10=25\)

25 tháng 7 2019

a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=7^3+2\left(x^2+2xy+y^2\right)\)

\(=343+2\left(x+y\right)^2\)

\(=343+2.7^2\)

\(=343+98=441\)

25 tháng 7 2019

b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)

\(=\left(-5\right)^3-\left(x-y\right)^2\)

\(=-125-\left(-5\right)^2\)

\(=-125-25=-150\)