Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)
(\(\frac{\left(x+y\right)^2}{x+y}\) -\(\frac{4xy}{x+y}\) ):\(\frac{\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\)
\(\frac{\left(x-y\right)^2}{x+y}\).\(\frac{x+y}{x-y}\) =x-y
\(\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}-\dfrac{y}{y-x}-\dfrac{2xy}{x^2-y^2}\right)\)
\(=\left(\dfrac{x\left(x+y\right)-4xy+y\left(x+y\right)}{x+y}\right):\left(\dfrac{x\left(x-y\right)+y\left(x+y\right)-2xy}{x^2-y^2}\right)\)
\(=\dfrac{\left(x-y\right)^2}{x+y}:\dfrac{\left(x-y\right)^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}.\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^2}=x-y\)
f: x+y+z=3
=>x^2+y^2+z^2+2(xy+xz+yz)=9
=>2(xy+yz+xz)=6
=>xy+yz+xz=3
mà x+y+z=3
nên x=y=z=1
e: x^2+y^2+2=2(x+y)
=>(x+y)^2-2xy+2-2(x+y)=0
=>(x+y)(x+y-2)-2(xy-1)=0
=>x=y=1
a) Ta có: A = (x + y)3 + 2x2 + 4xy + 2y2
A = 73 + 2(x2 + 2xy + y2)
A = 343 + 2(x + y)2
A = 343 + 2. 72
A = 343 + 98 = 441
b) B = (x - y)3 - x2 + 2xy - y2
=> B = (-5)3 - (x2 - 2xy + y2)
=> B = -125 - (x - y)2
=> B = -125 - (-5)2
=> B = -125 - 25 = -150
Bạn sai ở dấu bằng thứ 4. Mình làm lại nhé.
\(\left(x+y\right)^4+x^4+y^4\)
\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+4x^2y^2+y^4+4x^3y+4xy^3+2x^2y^2+x^4+y^4\)
\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2.\left[\left(x^4+2x^3y+x^2y^2\right)+\left(2x^2y^2+2xy^3\right)+y^4\right]\)
\(=2.\left[\left(x^2+xy\right)^2+2.\left(x^2+xy\right).y^2+\left(y^2\right)^2\right]\)
\(=2.\left(x^2+xy+y^2\right)^2\)
Học tốt nhe.
\(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\) \(\left(x,y\ne0;x\ne\pm y\right)\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{y^2-x^2}.\dfrac{y^2-x^2}{4xy}\)
\(=\dfrac{1}{x^2+2xy+y^2}+\dfrac{1}{4xy}\)
\(=\dfrac{6xy+x^2+y^2}{4xy\left(x+y\right)^2}\)
Ta có: \(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{4xy}\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{4xy}\)
\(=\dfrac{4xy}{4xy\left(x+y\right)^2}+\dfrac{x^2+2xy+y^2}{4xy\left(x+y\right)^2}\)
\(=\dfrac{x^2+6xy+y^2}{4xy\left(x+y\right)^2}\)
Câu 2:
\(B=x^2+2x+y^2-2x-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2\cdot7+37=49+37+14=100\)
Câu 3:
\(C=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2\cdot5+10=25\)
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)