Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150
Câu 2:
\(B=x^2+2x+y^2-2x-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2\cdot7+37=49+37+14=100\)
Câu 3:
\(C=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2\cdot5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
a)
*Biểu thức A
Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=x^2+y^2+1+2x-2y-2xy+36\)
\(=\left(x-y+1\right)^2+36\)
Thay x-y=7 vào biểu thức \(A=\left(x-y+1\right)^2+36\), ta được:
\(A=\left(7+1\right)^2+36=8^2+36=100\)
Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-y=7
*Biểu thức B
Ta có: \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
\(=\left(x-y\right)^2\cdot\left(x-y-1\right)\)
Thay x-y=7 vào biểu thức \(B=\left(x-y\right)^2\cdot\left(x-y-1\right)\), ta được:
\(B=7^2\cdot\left(7-1\right)^2=49-36=13\)
Vậy: giá trị của biểu thức \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) tại x-y=7 là 13
b) Ta có: \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\cdot\left(x+2y\right)\cdot1+1+9\)
\(=\left(x+2y-1\right)^2+9\)
Thay x+2y=5 vào biểu thức \(C=\left(x+2y-1\right)^2+9\), ta được:
\(C=\left(5-1\right)^2+9=4^2+9=25\)
Vậy: 25 là giá trị của biểu thức \(C=x^2+4y^2-2x+10+4xy-4y\) tại x+2y=5
b) N= (x-y)3-x2+2xy-y2=(x-y)3-(x2-2xy+y2)=(x-y)3-(x-y)2
thay x-y=5 vào N ta được: N= -53-52=-150
a) đề sai k vậy bạn?
a) Ta có: A = (x + y)3 + 2x2 + 4xy + 2y2
A = 73 + 2(x2 + 2xy + y2)
A = 343 + 2(x + y)2
A = 343 + 2. 72
A = 343 + 98 = 441
b) B = (x - y)3 - x2 + 2xy - y2
=> B = (-5)3 - (x2 - 2xy + y2)
=> B = -125 - (x - y)2
=> B = -125 - (-5)2
=> B = -125 - 25 = -150