K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài toán này của nhà toán học Gôn-bách,hình như trên thế giói chưa ai giải quyết trọn vẹn nên mk bó tay

29 tháng 5 2019

Giả thuyết Goldbach-Euler

17 tháng 10 2015

Có đến n số nguyên tố....con số n này đương nhiên vô hạn...vì vậy bài toán này là nan giải~~

29 tháng 5 2019

Hình như đề bài bị sai : 3 là số nguyên tố lớn hơn 2 

-> 3 không thể phân tích thành tổng của 3 số nguyên tố

5 là số nguyên tố lớn hơn 2 -> 5 không thể phân tích thành tổng của 3 số nguyên tố .

Nếu như vậy thì phải nói rằng :       Chứng minh rằng

Tất cả các số nguyên lớn hơn 5 là tổng của ba số nguyên tố.

Đề sai rùi nha 

chúc bn 

học tốt

theo mình nghĩ vậy

13 tháng 7 2016

Câu 1: 21 lần

Câu 2: 4 số

Câu 3: tổng là 69

Câu 4: S={3}

mik ko bít có làm đúng hay ko nữa, mà cái này có trong violympic phải ko

13 tháng 7 2016

lan dau

20 tháng 12 2015

1,-20

2,17

3,97

cho mình mấy tick nha

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

Câu 1:Tập hợp các số tự nhiên là bội của 13 và có phần tử.Câu 2:Có số vừa là bội của 3 vừa là ước của 54.Câu 3:Tập hợp các số tự nhiên sao cho là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 4:Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử làCâu 5:Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho...
Đọc tiếp

Câu 1:
Tập hợp các số tự nhiên là bội của 13 và có phần tử.

Câu 2:
Có số vừa là bội của 3 vừa là ước của 54.

Câu 3:
Tập hợp các số tự nhiên sao cho là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 4:
Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử là

Câu 5:
Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho 2 thì có số dư là

Câu 6:
Tổng của tất cả các số nguyên tố có 1 chữ số là

Câu 7:
Có bao nhiêu hợp số có dạng ?
Trả lời: có số.

Câu 8:
Tìm số nguyên tố nhỏ nhất sao cho và cũng là số nguyên tố.
Trả lời: Số nguyên tố

Câu 9:
Cho là các số nguyên tố thỏa mãn . Tổng .

Câu 10:
Tổng hai số nguyên tố là một số nguyên tố. Vậy hiệu của hai số nguyên tố đó là .

0
 Câu 1:Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử là Câu 2:Viết số 43 dưới dạng tổng của hai số nguyên tố  với . Khi đó  Câu 3:Viết số 43 dưới dạng tổng hai số nguyên tố  với . Khi đó  Câu 4:Tập hợp các số có hai chữ số là bội của 32 là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 5:Số số nguyên tố có...
Đọc tiếp

 

Câu 1:
Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử là 

Câu 2:
Viết số 43 dưới dạng tổng của hai số nguyên tố  với . Khi đó  

Câu 3:
Viết số 43 dưới dạng tổng hai số nguyên tố  với . Khi đó  

Câu 4:
Tập hợp các số có hai chữ số là bội của 32 là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 5:
Số số nguyên tố có dạng  là 

Câu 6:
Tổng 5 số nguyên tố đầu tiên là .

Câu 7:
Tập hợp các số tự nhiên  sao cho  là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 8:
Tổng của tất cả các số nguyên tố có 1 chữ số là 

Câu 9:
Dùng ba trong bốn số 4; 3; 1; 5 ghép lại thành số chia hết cho 9 và chia hết cho 5.
Tập các số viết được là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 10:
Tổng hai số nguyên tố là một số nguyên tố. Vậy hiệu của hai số nguyên tố đó là .

9
8 tháng 11 2016

c10=1;c8=17 ;c6=28 c4=0;32;64;96

7 tháng 11 2016

Cau 1. Co 11 so nhe