Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có đến n số nguyên tố....con số n này đương nhiên vô hạn...vì vậy bài toán này là nan giải~~
Hình như đề bài bị sai : 3 là số nguyên tố lớn hơn 2
-> 3 không thể phân tích thành tổng của 3 số nguyên tố
5 là số nguyên tố lớn hơn 2 -> 5 không thể phân tích thành tổng của 3 số nguyên tố .
Nếu như vậy thì phải nói rằng : Chứng minh rằng
Tất cả các số nguyên lớn hơn 5 là tổng của ba số nguyên tố.
Đề sai rùi nha
chúc bn
học tốt
theo mình nghĩ vậy
Bài toán này của nhà toán học Gôn-bách,hình như trên thế giói chưa ai giải quyết trọn vẹn nên mk bó tay
bạn ơi thiếu câu hỏi
bạn nhập câu hỏi đi rồi mình trả lời
Mình nghĩ đề bài là : Chứng minh rằng : Tất cả các số nguyên lớn hơn hai là tổng của ba số nguyên tố
a) 6=2+2+2
7=2+2+3
8=2+3+3
b) 30= 13+17= 7+23
32=3+29 = 19+13
a) Chứng minh: gọi số tự nhiên đó là n (n>5)
+) Nếu n chẵn => n= 2+m trong đó m chẵn ;m>3
+) Nếu n lẻ => n= 3+m trong đó m lẻ; m> 2
Theo mệnh đề Euler => m được viết dưới dạng tổng quát của 2 số nguyên tố
=> n là tổng quát của các số nguên tố
6= 3+3
7= 2+5
8= 3+5 (dựa vào số lẻ và chẵn như tổng quát trên)
b) CM như câu trên:
30= 7+23
32=19+13
Gọi 3 số nguyên tố liên tiếp cần tìm là p, q, r.
Ta có p2 + q2 + r2 = A là số nguyên tố.
Giả sử p < q < r
Do p, q, r là các số nguyên tố nên A = p2 + q2 + r2 > 3 nên
Nếu p, q, r đều không chia hết cho 3 khi đó p2 ; q2 ;r2 khi chia cho 3 dư 1 hoặc dư 2.
=> A chia hết cho hết cho 3 mà A > 3 nên A là hợp số trái với giả thiết (loại)
Vậy p chia hết cho 3, vì p nguyên tố nên p = 3 \(\Rightarrow\) q = 5 ; r = 7
Khi đó 32 + 52 + 72 = 83 là số nguyên tố
Vậy 3 số nguyên tố cần tìm chỉ có 3 ; 5 ; 7 thỏa mãn.
Đinh Tuấn Việt nhầm rồi:
Sửa lại: p; q;r là số nguyên tố > 3 => chúng có dạng 3k + 1 hoặc 3k + 2
=> p2; q2; r2 chia cho 3 đều dư 1
=> p2 + q2+ r2 chia hết cho 3 => A chia hết cho 3
.....................