Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)
\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)
\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)
\(\Rightarrow x\cdot\frac{24}{50}=1\)
\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)
#Louis
\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)
\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)
\(\frac{12}{25}x=1\)
Đến đây dễ rồi :)))
Bn tự tính típ nha
Đặt:\(M=\frac{1}{2}\cdot\frac{3}{4}...\frac{9999}{10000}\)
\(N=\frac{2}{3}\cdot\frac{4}{5}...\frac{10000}{10001}\)
Dễ dàng nhận thấy: \(\frac{1}{2}<\frac{2}{3};\frac{3}{4}<\frac{4}{5};...;\frac{9999}{10000}<\frac{10000}{10001}\)
\(\Rightarrow\)M < N
Mặt khác:
\(M.N=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}...\frac{10000}{10001}\right)\)
\(M.N=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\frac{9999}{10000}\cdot\frac{10000}{10001}\)
\(M.N=\frac{1.2.3...9999.10000}{2.3.4...10000.10001}\)
\(M.N=\frac{1}{10001}\)
Mà M < N \(\Rightarrow\)M.M<M.N
Hay \(M.M<\frac{1}{10001}<\frac{1}{10000}=\frac{1}{100}\cdot\frac{1}{100}\)
\(\Rightarrow M<\frac{1}{100}\)(đpcm)
Ta có :
\(A<\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.............\frac{10000}{10001}=M\)
=> A.A < A.M = \(\frac{1}{10001}\)
=> A2 < \(\frac{1}{10000}=\left(\frac{1}{100}\right)^2\)
=> A < \(\frac{1}{100}\)
k nha bạn
2A=1+1/2+1/2^2+1/2^3+...+1/2^99
-A= 1/2+1/2^2+1/2^3+...+1/2^99+1/2^100
-------------------------------------------------------------------
A=1-1/2^100
A=2^100-1/2^100<1(dpcm)
B), B=2/1.2 +22.3 +23.4 +...+299.100 <2 =
=1-1/2-1/2-1/3+.........+1/99-1/100
=1-1/100
=99/100
vì 99/100<2 nên B=2/1.2+2/2.3+2/3.4+......+2/99.100<2