Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}< 2\left(đpcm\right)\)
2A=1+1/2+1/2^2+1/2^3+...+1/2^99
-A= 1/2+1/2^2+1/2^3+...+1/2^99+1/2^100
-------------------------------------------------------------------
A=1-1/2^100
A=2^100-1/2^100<1(dpcm)
B), B=2/1.2 +22.3 +23.4 +...+299.100 <2 =
=1-1/2-1/2-1/3+.........+1/99-1/100
=1-1/100
=99/100
vì 99/100<2 nên B=2/1.2+2/2.3+2/3.4+......+2/99.100<2
A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)
Mà A=1+B=>A=1+B<1+1=2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)
B)
ta có : \(1=1\)
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)
tất cả công lại \(\Rightarrow B< 6\)
Ta có:
\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
Đặt \(I=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)
Ta có: \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};.....;\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow C< D\)
Lại có: \(C\cdot D=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\right)\)
\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)
\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{10000}{10001}\)
\(\Leftrightarrow C\cdot D=\frac{1}{10001}\)
Mà C<D \(\Rightarrow C\cdot C< C\cdot D\)
Hay \(C\cdot C< \frac{1}{10001}\)
\(\Rightarrow C< \frac{1}{10001}< \frac{1}{100}\)
Vậy \(C< \frac{1}{100}\left(đpcm\right)\)
Đặt :\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
\(N=\frac{2}{3}.\frac{4}{5}...\frac{10000}{10001}\)
Ta thấy:\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};....;\frac{9999}{10000}< \frac{10000}{10001}\)
Mặt khác ta thấy:
\(C.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\right)\)
\(C.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{9999}{10000}.\frac{10000}{10001}\)
\(C.N=\frac{1.2.3....9999.10000}{2.3.4....10000.10001}\)
Rút gọn phép tính \(C.N\)
\(C.N=\frac{1}{10001}\)
\(C.C< N\Rightarrow C.C< C.N\)
Hay\(C.C< \frac{1}{10001}< \frac{1}{10000}=\frac{1}{10}.\frac{1}{10}\)
\(\Rightarrow C< \frac{1}{10000}\)(đpcm)