Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )
= 100a + 10b + c - 100c - 10b - a
= ( 100a - a ) + ( 10b - 10b ) + ( c - 100c )
= 99a + ( -99a )
= 99 ( a - c )
Vì 99 chia hết cho 99 => 99 ( a - c ) chia hết cho 99
=> abc - cba chia hết cho 99 ( đpcm )
Đặt A=abc
Ta có:A=100a+10b+c-(100c+10b+a)
= 99a-99c=99(a-c)
A/99= a-c
Vậy A chia hết cho 99
ý đàu tiên:
ta có: \(\overline{ba}-\overline{ab}\)=10b+a-10a-b=9b-9a=9(b-a) chia hết cho 9
Chỉ cần bạn nhớ dạng thức như sau: abc = 100a+10b+c thì sử dụng được hầu hết dạng toán như thế này.
Ta có: abc - cba = 100a+10b+c-100c-10b-a = (100a-a)+(10b-10b)-(100c-c) = 99a - 99c = 99(a-c) chia hết cho 99
l--i--k--e nha
Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )
= 100a + 10b + c - 100c - 10b - a
= ( 100a - a ) + ( 10b - 10b ) + ( c - 100c )
= 99a + ( -99 c )
= 99 (a - c )
Vì 99 chia hết cho 99 nên 99 ( a - c ) chia hết cho 99 => abc - cba chia hết cho 99 ( đpcm )
abc - cba = a.100 + b.10 + c - c.100 - b.10 - a =99.(a-c) chia hết cho 99
Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )
= 100a + 10b + c - 100c - 10b - a
= ( 100a - a ) + ( 10b - 10b ) + ( c -100c )
= 99a + ( -99c )
= 99 (a - c )
Vì 99 chia hết cho 99 nên 99( a - c ) chia hết cho 99 => abc - cba chia hết cho 99 ( đpcm )
abc - cba
= 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99(a - c)
Vì 99 chia hết cho 99 nên 99(a - c) chia hết cho 99 hay abc - cba chia hết cho 99
Vậy...
abc - cba
= 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99(a - c)
Vì 99 chia hết cho 99 nên 99(a - c) chia hết cho 99 hay abc - cba chia hết cho 99
Vậy abc-cba chia het cho 99
abc - cba = (100a + 10b + c) - (100c + 10b + a) = 100a + 10b + c - 100c - 10b - a = 99a - 99c = 99(a - c) luôn chia hết cho 99
Vậy abc - cba chia hết cho 99
a)
Ta có ab/abc là số có 2 chữ số CMR (chữ số hàng đơn vị khác 0).
Đặt ab = 10a + b và abc = 100a + 10b + c.
Theo đề bài, ta có phương trình:
(10a + b + 10b + a)/(100a + 10b + c) chia hết cho 11. (11a + 11b)/(100a + 10b + c) chia hết cho 11.
Điều này có nghĩa là 11a + 11b chia hết cho 100a + 10b + c.
Vì 11a + 11b = 11(a + b) và 100a + 10b + c = 11(9a + b) + c, ta có thể viết lại phương trình trên dưới dạng:
11(a + b) chia hết cho 11(9a + b) + c. Do đó, c chia hết cho 11.
Vậy, c là một số chia hết cho 11.
b)
Ta có abc - cba = 100a + 10b + c - (100c + 10b + a) = 99a - 99c = 99(a - c).
Vì 99(a - c) chia hết cho 99, ta có abc - cba chia hết cho 99.
Ta có : abc - cba = 100a + 10b + c - 100c + 10b + a = 99a + 99c chia hết cho 99