K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

Ta có : abc - cba = 100a + 10b + c - 100c + 10b + a = 99a + 99c chia hết cho 99

21 tháng 3 2016

Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )

                              = 100a + 10b + c - 100c - 10b - a

                              = ( 100a  - a ) + ( 10b - 10b ) + ( c - 100c )

                              = 99a + ( -99a )

                              = 99 ( a - c )

Vì 99 chia hết cho 99 => 99 ( a - c ) chia hết cho 99

=> abc - cba chia hết cho 99 ( đpcm )

21 tháng 3 2016

Đặt A=abc

Ta có:A=100a+10b+c-(100c+10b+a)

           = 99a-99c=99(a-c) 
         A/99= a-c 
Vậy A chia hết cho 99

27 tháng 10 2016

ý đàu tiên:

ta có:    \(\overline{ba}-\overline{ab}\)=10b+a-10a-b=9b-9a=9(b-a) chia hết cho 9

27 tháng 10 2016

ý thứ 2 đề bài phải là trừ chứ bạn

nếu là trừ thì giải như sau:

\(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)chia hết cho 99

20 tháng 3 2016

Chỉ cần bạn nhớ dạng thức như sau: abc = 100a+10b+c thì sử dụng được hầu hết dạng toán như thế này.

Ta có: abc - cba = 100a+10b+c-100c-10b-a = (100a-a)+(10b-10b)-(100c-c) = 99a - 99c = 99(a-c) chia hết cho 99

l--i--k--e nha

20 tháng 3 2016

Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )

                              = 100a + 10b + c - 100c - 10b - a

                              = ( 100a - a ) + ( 10b - 10b ) + ( c - 100c )

                              = 99a + ( -99 c )

                              = 99 (a - c )

Vì 99 chia hết cho 99 nên 99 ( a - c ) chia hết cho 99 => abc - cba chia hết cho 99 ( đpcm )

20 tháng 3 2016

abc cba = a.100 + b.10 + c - c.100 - b.10 - a =99.(a-c) chia hết cho 99

20 tháng 3 2016

Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )

                              = 100a + 10b + c - 100c - 10b - a

                              = ( 100a - a ) + ( 10b - 10b ) + ( c -100c )

                              = 99a + ( -99c )

                              = 99 (a - c )

Vì 99 chia hết cho 99 nên 99( a - c ) chia hết cho 99 => abc - cba  chia hết cho 99 ( đpcm )

18 tháng 10 2017

abc - cba

= 100a + 10b + c - 100c - 10b - a

= 99a - 99c

= 99(a - c)

Vì 99 chia hết cho 99 nên 99(a - c) chia hết cho 99 hay abc - cba chia hết cho 99

Vậy...

7 tháng 11 2017

abc - cba

= 100a + 10b + c - 100c - 10b - a

= 99a - 99c

= 99(a - c)

Vì 99 chia hết cho 99 nên 99(a - c) chia hết cho 99 hay abc - cba chia hết cho 99

Vậy abc-cba chia het cho 99

29 tháng 11 2016

abc - cba = (100a + 10b + c) - (100c + 10b + a) = 100a + 10b + c - 100c - 10b - a = 99a - 99c = 99(a - c) luôn chia hết cho 99

Vậy abc - cba chia hết cho 99

29 tháng 11 2016

abc-cba=(100a+10b+c)-(100c+10b+a)=99a-99b

14 tháng 7 2023

a)

Ta có ab/abc là số có 2 chữ số CMR (chữ số hàng đơn vị khác 0).

Đặt ab = 10a + b và abc = 100a + 10b + c.

Theo đề bài, ta có phương trình:

(10a + b + 10b + a)/(100a + 10b + c) chia hết cho 11. (11a + 11b)/(100a + 10b + c) chia hết cho 11.

Điều này có nghĩa là 11a + 11b chia hết cho 100a + 10b + c.

Vì 11a + 11b = 11(a + b) và 100a + 10b + c = 11(9a + b) + c, ta có thể viết lại phương trình trên dưới dạng:

11(a + b) chia hết cho 11(9a + b) + c. Do đó, c chia hết cho 11.

Vậy, c là một số chia hết cho 11.

b)

Ta có abc - cba = 100a + 10b + c - (100c + 10b + a) = 99a - 99c = 99(a - c).

Vì 99(a - c) chia hết cho 99, ta có abc - cba chia hết cho 99.