Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ cần bạn nhớ dạng thức như sau: abc = 100a+10b+c thì sử dụng được hầu hết dạng toán như thế này.
Ta có: abc - cba = 100a+10b+c-100c-10b-a = (100a-a)+(10b-10b)-(100c-c) = 99a - 99c = 99(a-c) chia hết cho 99
l--i--k--e nha
Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )
= 100a + 10b + c - 100c - 10b - a
= ( 100a - a ) + ( 10b - 10b ) + ( c - 100c )
= 99a + ( -99 c )
= 99 (a - c )
Vì 99 chia hết cho 99 nên 99 ( a - c ) chia hết cho 99 => abc - cba chia hết cho 99 ( đpcm )
abc - cba = a.100 + b.10 + c - c.100 - b.10 - a =99.(a-c) chia hết cho 99
Ta có : abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a )
= 100a + 10b + c - 100c - 10b - a
= ( 100a - a ) + ( 10b - 10b ) + ( c -100c )
= 99a + ( -99c )
= 99 (a - c )
Vì 99 chia hết cho 99 nên 99( a - c ) chia hết cho 99 => abc - cba chia hết cho 99 ( đpcm )
abc chia hết cho 27 => 100a + 10 b + c chia hết cho 27
100a + 10b + c = 81a + (19a + 10b+ c). Vì 81a chia hết cho 27 nên 19a + 10b + c chia hết cho 27
Ta có: bca = 100b + 10c + a = 81b + (19b + 10c + a) = 81b + (19a + 10b + c) + (9b + 9c - 18a)
= 81b + (19a + 10b + c) + 9.(b +c - 2a) (1)
Nhận xét: 81b và (19a + 10b + c) đều chia hết cho 27(2)
b+ c - 2a = (b+c+a) - 3a luôn chia hết cho 3 (Vì abc chia hết cho 27 nên chia hết cho 3 => a+b + c chia hết cho 3)
=> 9.(b+c- 2a) chia hết cho 27 (3)
(1+2+3) => bca chia hết 27
A=100a+10b+c-(100c+10b+a)= 99a-99c=99(a-c)
A/99= a-c
Vậy A chia hết cho 99
ab+ba=10a+1b+10b+1a=11a+11b=11+(a+b)=mà 11 chia hết cho 11 nên số đó chia hết cho 11
abc-cba=100a+10b+1c+100c+10b+1a=(100-1)a+(10-10)b+(100-1)c=99a+0b+99c mà 99 chia hết cho 99 nên số đó chia hết cho 99
a)a. ab+ba = 10a+b+10b+a = 11a+11b = 11(a+b) chia hết cho 11
=> đpcm
b) Ta có:
abc ‐ cba = 100a+10b+c‐100c‐10b‐a = ﴾100a‐a﴿ + ﴾10b‐10b﴿ ‐ ﴾100c‐c﴿ = 99a ‐ 99c = 99. ﴾a‐c﴿ chia hết cho 99 ﴾đpcm﴿
abc - cba = 100a + 10b + c - 100c - 10b - a = (100a - a) + (10b - 10b) - (100c - c) = 99a - 99c = 99(a - c) chia hết cho 99
Ta có:
abc=100a+10b+c
cba=100c+10b+a
=> abc -cba =100a+10b+c - 100c+10b+c
=99a+99c
=99(a+b) chia hết cho99