Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)\(\Leftrightarrow\frac{bk-b}{b}=\frac{dk-d}{d}\)
Xét VT \(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
Xét VP \(\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2) =>Đpcm
b)Đặt tương tự ta xét VT:
\(\frac{11bk+3b}{11dk+3d}=\frac{b\left(11k+3\right)}{d\left(11k+3\right)}=\frac{b}{d}\left(1\right)\)
Xét VP \(\frac{3bk-11b}{3dk-11d}=\frac{b\left(3k-11\right)}{d\left(3k-11\right)}=\frac{b}{d}\left(2\right)\)
Từ (1) và (2) =>Đpcm
c)Cũng đặt tương tự
Xét VT \(\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
Xét VP \(\frac{bk\cdot dk}{b\cdot d}=\frac{b\cdot d\cdot k^2}{b\cdot d}=k^2\left(2\right)\)
Từ (1) và (2) =>Đpcm
d)Đặt cũng như vậy
Xét VT \(\frac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\frac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\frac{b^4\left(4k^4+5\right)}{d^4\left(4k+5\right)}=\frac{b^4}{d^4}\left(1\right)\)
Xét VP \(\frac{\left(bk\right)^2b^2}{\left(dk\right)^2d^2}=\frac{b^2k^2b^2}{d^2k^2d^2}=\frac{k^2b^4}{k^2d^4}=\frac{b^4}{d^4}\left(2\right)\)
Từ (1) và (2) =>Đpcm
a) \(\frac{a-b}{b}=\frac{c-d}{d}\)
Xét d. ( a - b ) = a . d - b . d
b. ( c - d ) = b . c - b . d
Vì \(\frac{a}{b}=\frac{c}{d}\) => a . d = b . c
hay d. ( a - b ) = b. ( c - d )
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Suy ra: \(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b.\left(2k+13\right)}{b.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d.\left(2k+13\right)}{d.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
Vậy \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) khi: \(\frac{a}{b}=\frac{c}{d}\)
Ta có a.(a+b+c)+b.(a+b+c)+c.(a+b+c)=1/144
=>ta sử dụng phép phân phối có a+b+c chung
=>(a+b+c)(a+b+c)=1/144
=>a+b+c=1/12
từ đó tính a,b,c lần lượt là -1/2;3/4;-1/6
cậu toàn chép sai đề bài à nếu là c.(a+b+c)=-1/72 mới tính được
a.
\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\frac{5x}{35}=3\Rightarrow x=\frac{35\times3}{5}=21\)
\(\frac{2y}{6}=3\Rightarrow y=\frac{6\times3}{2}=9\)
Vậy \(x=21\) và \(y=9\)
b.
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{34}{17}=2\)
\(\frac{2x}{38}=2\Rightarrow x=\frac{38\times2}{2}=38\)
\(\frac{y}{21}=2\Rightarrow y=2\times21=42\)
Vậy \(x=38\) và \(y=42\)
c.
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x=\sqrt{1}=\pm1\)
\(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y=\sqrt{\frac{16}{4}}=\sqrt{4}=\pm2\)
\(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z=\sqrt{\frac{36}{4}}=\sqrt{9}=\pm3\)
Vậy \(x=1;y=2;z=3\) hoặc \(x=-1;y=-2;z=-3\)
d.
Cách 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)
Vậy \(x=2\) và \(y=3\)
Cách 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7-6x}=0\)
\(2x+1=0\Rightarrow x=-\frac{1}{2}\)
\(3y-2=0\Rightarrow y=\frac{2}{3}\)
Vậy \(x=-\frac{1}{2}\) và \(y=\frac{2}{3}\)
Chúc bạn học tốt ^^
a) 2,04: (-3,12) = \(\frac{2,04}{-3,12}=\frac{-204}{312}\)
b)
c)
d)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=3k\)
\(z=5k\)
Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=27\)
\(k^3=3^3\)
\(\Rightarrow k=3\)
\(\Rightarrow x=2k=2.3=6\)
\(y=3k=3.3=9\)
\(z=5k=5.3=15\)
Vậy \(x=6;y=9;z=15\)
viết đề ngu như chó
cho mỗi CMR thì làm = niềm tin ak