Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\left(đpcm\right)\)
Giải:
Ta có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{57}{7}\)
+) \(\frac{x}{6}=\frac{57}{7}\Rightarrow x=\frac{342}{7}\)
+) \(\frac{y}{4}=\frac{57}{7}\Rightarrow y=\frac{228}{7}\)
+) \(\frac{z}{3}=\frac{57}{7}\Rightarrow z=\frac{171}{7}\)
Vậy \(x=\frac{342}{7},y=\frac{228}{7},z=\frac{171}{7}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)
\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)
Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{k-1}{k+1}\)
\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{k-1}{k+1}\)
Do đó: \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
a: 2x+3>=1
=>2x>=-2
hay x>=-1
b: -3x+4<=5
=>-3x<=1
hay x>=-1/3
c: 3x+5<4-2x
=>5x<-1
hay x<-1/5
d: 1/2x+7>-5/2
=>1/2x>-19/2
hay x>-19
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow\begin{cases}a^2=4.4=16\\b^2=4.9=36\\c^2=4.32:2=64\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)
Vậy các cặp giá trị (a;b;c) tương ứng thỏa mãn là: (4;6;8) ; (-4;-6;-8)
\(\frac{a}{2}=\frac{a^2}{2^2}=\frac{a^2}{4}\)
\(\frac{b}{3}=\frac{b^2}{3^2}=\frac{b^2}{9}\)
\(\frac{c}{4}=\frac{2c^2}{2\times4^2}=\frac{2c^2}{32}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tính chất tỉ số bằng nhau, ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\left[\begin{array}{nghiempt}\frac{a^2}{4}=4\\\frac{b^2}{9}=4\\\frac{2c^2}{32}=4\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a^2=16\\b^2=36\\c^2=64\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=\pm4\\b=\pm6\\c=\pm8\end{array}\right.\)
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)\(\Leftrightarrow\frac{bk-b}{b}=\frac{dk-d}{d}\)
Xét VT \(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
Xét VP \(\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2) =>Đpcm
b)Đặt tương tự ta xét VT:
\(\frac{11bk+3b}{11dk+3d}=\frac{b\left(11k+3\right)}{d\left(11k+3\right)}=\frac{b}{d}\left(1\right)\)
Xét VP \(\frac{3bk-11b}{3dk-11d}=\frac{b\left(3k-11\right)}{d\left(3k-11\right)}=\frac{b}{d}\left(2\right)\)
Từ (1) và (2) =>Đpcm
c)Cũng đặt tương tự
Xét VT \(\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
Xét VP \(\frac{bk\cdot dk}{b\cdot d}=\frac{b\cdot d\cdot k^2}{b\cdot d}=k^2\left(2\right)\)
Từ (1) và (2) =>Đpcm
d)Đặt cũng như vậy
Xét VT \(\frac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\frac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\frac{b^4\left(4k^4+5\right)}{d^4\left(4k+5\right)}=\frac{b^4}{d^4}\left(1\right)\)
Xét VP \(\frac{\left(bk\right)^2b^2}{\left(dk\right)^2d^2}=\frac{b^2k^2b^2}{d^2k^2d^2}=\frac{k^2b^4}{k^2d^4}=\frac{b^4}{d^4}\left(2\right)\)
Từ (1) và (2) =>Đpcm
a) \(\frac{a-b}{b}=\frac{c-d}{d}\)
Xét d. ( a - b ) = a . d - b . d
b. ( c - d ) = b . c - b . d
Vì \(\frac{a}{b}=\frac{c}{d}\) => a . d = b . c
hay d. ( a - b ) = b. ( c - d )
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)