Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 3n+2-2n+2+3n-2n=(...34)n x32-(...24)n x22+(...34)n-(...24)n
= (...81)nx9-(...16)nx4+(...81)n -(...16)n
=(...9)n-(...4)n+(..1)n-(...6)n
=(....0)n Có chử số tận cùng là 0 nên chia hết cho 10
Vậy...
Đặt A=\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
A=\(4^{n-1}\left(4^4+4^3-4^2-4\right)\)
A=\(4^{n-1}\cdot300⋮300\)
Ta có:
\(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)
\(=4^{n-1}.\left(4^4+4^3-4^2-4\right)\)
\(=4^{n-1}.300⋮300\)
\(\Rightarrow4^{n+3}+4^{n+2}-4^{n+1}-4^n⋮300\left(đpm\right)\)
a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3)
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z)
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4)
= 2(k+1)2(k+2)= 4(k+1)(k+2)
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2
=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)
a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3
=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8
vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ
nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8
nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do