Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)
\(N=\dfrac{1}{2^1}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+\dfrac{1}{2^5}-\dfrac{1}{2^6}\)
\(2N=1-\dfrac{1}{2^1}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{2^5}\)
\(2N+N=1-\dfrac{1}{2^6}\)
\(N=\dfrac{1}{3}-\dfrac{1}{2^6.3}< \dfrac{1}{3}\left(đpcm\right)\)
Giải:
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)
\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}\)
Lấy vế trừ vế, ta được:
\(A-\dfrac{1}{2}A=\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)
\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)
\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}-\dfrac{1}{2^7}}{\dfrac{1}{2}}\)
\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}\left(1-\dfrac{1}{2^6}\right)}{\dfrac{1}{2}}\)
\(\Leftrightarrow A=1-\dfrac{1}{2^6}\)
Vậy \(A=1-\dfrac{1}{2^6}\).
Chúc bạn học tốt!!!
Đặt:
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)
\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)
\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)
\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)
\(A=1-\dfrac{1}{2^6}=1-\dfrac{1}{64}=\dfrac{63}{64}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+......+\dfrac{1}{2^6}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^5}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+.......+\dfrac{1}{2^5}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^6}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^6}\)
\(\Leftrightarrow A=\dfrac{63}{64}\)
Bạn trả lời đúng 1 cách rồi, nếu bạn trả lời đúng 1 cách kia thì mình sẽ chọn đúng cho bạn.
\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}.\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}\right)}{\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}}\)
\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)
Đặt \(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{196}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{13^2}\)
Đặt \(B=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{12\cdot13}\)
Ta có:
\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{13^2}\)\(<\)\(B=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{12\cdot13}\left(1\right)\)
Mà \(B=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{12\cdot13}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{12}-\dfrac{1}{13}\)
\(=\dfrac{1}{2}-\dfrac{1}{13}< \dfrac{1}{2}\left(2\right)\). Từ \((1)\) và \((2)\) ta có:
\(A< B< \dfrac{1}{2}\Rightarrow A< \dfrac{1}{2}\) (Điều phải chứng minh)
a)\(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2^2-1}+\dfrac{1}{4^2-1}+...+\dfrac{1}{100^2-1}\)
\(A< \dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\)
\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}< \dfrac{50}{100}=\dfrac{1}{2}\)
Vậy \(A< \dfrac{1}{2}\)
b)B=\(\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{2499}{2500}\)
49-B=\(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)
\(49-B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(49-B< 1-\dfrac{1}{50}< 1\Leftrightarrow49< 1+B\Leftrightarrow B>48\)(ĐPCM)
b) Đặt :
\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+............+\dfrac{2499}{2500}\)
\(\Rightarrow A=\dfrac{4}{4}-\dfrac{1}{4}+\dfrac{9}{9}-\dfrac{1}{9}+.........+\dfrac{2500}{2500}-\dfrac{1}{2500}\)
\(A=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...........+1-\dfrac{1}{50^2}\)
\(A=\left(1+1+....+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)\)(\(49\) chữ số \(1\))
\(A=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+........+\dfrac{1}{50^2}\right)\)
Lại có :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)
Mà :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+............+\dfrac{1}{50^2}\right)>49-1\)\(=48\)
\(\Rightarrow A>48\) \(\rightarrowđpcm\)
Sửa đề:
\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< 1\)
Ta có:
\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{64}\)
\(< \dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}< \dfrac{4}{4}< 1\)