Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=182\left(ab\right)^2-81a^3b-81ab^3-10a^4-10b^4\)
Ta có : \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b-a\right)=9\left(a-b\right)\)
Theo giả thiết thì \(\left(\overline{ab}-\overline{ba}\right)⋮11\) , tức là \(9\left(a-b\right)⋮11\)
Mà (9;11) = 1 nên \(\left(a-b\right)⋮11\)(1)
Mặt khác , \(1\le a\le9\); \(0\le b\le9\)
Do vậy \(-8\le a-b\le9\)(2)
Từ (1) và (2) ta có \(a-b=0\Leftrightarrow a=b\)
Với a = b thay vào A được : \(182a^4-81a^4-81a^4-10a^4-10a^4=0\) luôn chia hết cho 14641
Vậy có đpcm.
Ta có
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
Chia hết cho 11 => (a - b) chia hết cho 11 (1)
Gọi UC(ab; ba) là d ta có
ab - ba = 11 chia hết cho d
Mà ab và ba là số có 2 chữ số và 11 là số nguyê tố nên d = 11
Từ đó ta có
ab = 10a + b chia hết cho 11 (2)
ba = 10b + a chia hết cho 11 (3)
Ta có: 182(ab)2-81a3b-81ab3-10a4-10b4
= - (10a + b)(10b + a)(a - b)2 (4) ( cái này mình ghi nhâ tử luôn cho gọn nha)
Từ (1), (2), (3), (4) ta có 182(ab)2-81a3b-81ab3-10a4-10b4 chia hết cho 114 = 14641
\(5^5-5^4+5^3=5^3.5^2-5^3.5+5^3=5^3.(5^2-5+1)\)
\(=5^3.21=5^3.3.7 \vdots 7 \Rightarrow 5^5-5^4+5^3\vdots 7\)
Tương tự :
b,\(7^6+7^5-7^4=7^4.(7^2+7-1)=7^4.55=7^4.5.11\vdots11\)
\(\Rightarrow 7^6+7^5-7^4\vdots 11\)
c,\(24^{54}.54^{24}.2^{10}=(2^3.3)^{54}.(2.3^3)^{24}.2^{10}\)
\(=(2^3)^{54}.3^{54}.2^{24}.(3^3)^{24}.2^{10}\)
\(=(2^3)^{54}.(2^3)^8.2^3.(3^2)^{27}.(3^2)^{36}.2^{7}\)
\(=(2^3)^{63}.(3^2)^{63}.2^7=(2^3.3^2)^{63}.2^7=72^{63}.2^7 \vdots 72^{63}\)
d,\(3^{n+3}+3^{n+1}+2^{n+3}.2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+3}.2^{n+2}\)
\(=3^{n+1}.(3^2+1)+2^{2n+5}=10.3^{n+1}+2.2^{2n+4}\)
\(=2.(5.3^{n+1}+2^{2n+4})\)
Lỗi đề rồi!!!!!!!!!! tớ thay số vào không đúng!
a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3)
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z)
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4)
= 2(k+1)2(k+2)= 4(k+1)(k+2)
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2
=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)
a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3
=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8
vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ
nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8
nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do
Ta có:
- \(3^3=27\equiv1\left(mod13\right)\Rightarrow\left(3^3\right)^{35}=3^{105}\equiv1\left(mod13\right)\)
\(4^3=64\equiv-1\left(mod13\right)\Rightarrow\left(4^3\right)^{35}=4^{105}\equiv-1\left(mod13\right)\)
Vậy \(A=3^{105}+4^{105}\equiv1+\left(-1\right)\left(mod13\right)\) hay \(A⋮13\left(1\right)\)
- \(4^3\equiv-2\left(mod11\right)\Rightarrow\left(4^3\right)^5=4^{15}\equiv\left(-2\right)^5\left(mod11\right)\) hay \(4^{15}\equiv1\left(mod11\right)\)
\(3^5=243\equiv1\left(mod11\right)\Rightarrow\left(3^5\right)^{21}=3^{105}\equiv1\left(mod11\right)\)
Vậy \(A=3^{105}+4^{105}\equiv1+1\left(mod11\right)\) hay \(A=3^{105}+4^{105}\equiv2\left(mod11\right)\)
=> A không chia hết cho 11 (2)
Từ (1) và (2) => đcpm
Chứng minh chia hết cho 13:
\(A=3^{105}+4^{105}\\ A=\left(3^3\right)^{35}+\left(4^3\right)^{35}\\ A=27^{35}+64^{35}\\ A=\left(27+64\right)\left(27^{34}-27^{33}.35+.......+35^{34}\right)\)
\(A=91\left(27^{34}-27^{33}.35+........+35^{34}\right)\)
\(A=13.7\left(27^{34}-27^{33}.35+........+35^{34}\right)\) chia hết cho 13
Chứng minh không chia hết cho 11
\(3^{105}=243^{21}=\left(242+1\right)^{21}=242^{21}+2.242+1^{21}=242^{21}+2.242+1\)
Vì \(242\) chia hết cho 11 nên \(242^{21}+2.242+1\) chia 11 dư 1
\(4^{105}=1024^{21}=\left(1023+1\right)^{21}=1023^{21}+2.1023+1\)
Vì \(1023\) chia hết cho 11 nên \(1023^{21}+2.1023+1\) chia 11 dư 1
Vậy tổng \(A=3^{105}+4^{105}\) chia 11 dư 2 \(\left(1+1\right)\)
Vậy A không chia hết cho 11 (2)
Đặt:
\(A=1+3+3^2+3^3+.....+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{10}+3^{11}\right)\)
\(A=1\left(1+3\right)+3^2\left(1+3\right)+.....+3^{10}\left(1+3\right)\)
\(A=1.4+3^2.4+....+3^{10}.4\)
\(A=4\left(1+3^2+...+3^{10}\right)\)
\(A⋮4\rightarrowđpcm\)
Đặt : B = 1 + 3 + 32 + 33 + ........+311
B = (1+3 ) +(32+33)+..........+ (310+311)
B=1.(1+3)+32.(1+3 ) +............+ 310 . ( 1+3)
B = 1.4 + 32.4 +.................+ 310.4
B = 4.(1+32+..............+310)
Mà 4 \(⋮\) 4
=>4.(1+32+.........+310) \(⋮\)4
Vậy B \(⋮\)4