Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét \(n=3k\Rightarrow n(n+2)(n+7)=3k(n+2)(n+7)\vdots 3\)
Xét \(n=3k+1\Rightarrow n(n+2)(n+7)=n(3k+3)(n+7)=3n(k+1)(n+7)\vdots 3\)
Xét \(n=3k+2\Rightarrow n(n+2)(n+7)=n(n+2)(3k+9)=3n(n+2)(k+3)\vdots 3\)
Từ các TH trên ta suy ra \(n(n+2)(n+7)\vdots 3\) với mọi \(n\in\mathbb{N}\)
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
n2+n+6=n(n+1)+6
n(n+1) không có tận cùng=4;9=>n(n+1)+6 không chia hết cho 5
=>n2+6 không chia hết cho 5
=>đpcm
\(n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n^2-4\right)+5\left(n-1\right)n\left(n+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Ta thấy: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích 5 số nguyên liên tiếp ( do n thuộc N ) nên chia hết cho 5
\(5\left(n-1\right)n\left(n+1\right)\)chia hết cho 5
\(\Rightarrow\)\(n^5-n\) chia hết cho 5 (1)
\(n^5-n=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\) chia hết cho 2, cho 3
mà \(\left(2;3\right)=1\) nên \(n^5-n\)chia hết cho 6 (2)
Do \(\left(5;6\right)=1\) nên từ (1) và (2) suy ra: \(n^5-n\)chia hết cho 30
Cho A=n5-n
A = n⁵ - n
= n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (chia hết cho 6, vì chia hết cho 2, 3) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
{n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
{5n(n - 1)(n + 1) chia hết cho 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5
=> A chia hết cho 5 (2)
(1)(2)=> A chia hết cho 30 do (5,6)=1
Tào Tháo Đường tick và theo dõi mik nhá