Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)
\(=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ca+a^2\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
Cần chứng minh \(\frac{\left(Σ_{cyc}a^2\right)^2}{Σ_{cyc}a\left(a^2+ab+b^2\right)}\ge\frac{Σ_{cyc}a}{3}\)
Nhân ra và nó đúng theo BĐT Schur
Ta có \(a^4+b^4-2ab^3-2a^3b+2a^2b^2\) =(a2-ab)2+(b2-ab)2\(\ge0\forall a;b\) suy ra
\(\dfrac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)(đpcm)
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
bn ơi bn viết
chữ nhỏ quá đó
bn ấn vào chữ x2
à bn mình nhìn rõ
nhưng có chữ
ko đọc được