K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2020

1.

\(x^2+y^2+z^2\ge2xy+2yz-2zx\)

\(\Leftrightarrow x^2+y^2+z^2-2xy-2yz+2zx\ge0\)

\(\Leftrightarrow\left(x-y+z\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x+z=y\)

2.

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(\Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z=1\)

14 tháng 5 2017

ta có: x2 + y2 + z2 \(\ge\) 2x - 2y - 2z
<=> 2(x2 + y2 + z2) \(\ge\) 4x + 4y + 4z
<=> 2(x - 1)2 + 2(y - 1)2 + 2(z - 1)2 \(\ge\) 0 \(\forall\) x,y,z
dấu ''='' xảy ra \(\Leftrightarrow\) x = y = z = 1

21 tháng 1 2017

x2 + y2 + z2 - xy - 3y - 2z + 4 = 0

\(\Leftrightarrow\)(x2 - xy +\(\frac{y^2}{4}\)) + (\(\frac{3y^2}{4}\) - 3y + 3) + (z2 - 2z + 1) = 0

\(\Leftrightarrow\)(x -\(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0

\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)

30 tháng 12 2016

mk k bt lm. Mk ms hk lp 8...

AH
Akai Haruma
Giáo viên
23 tháng 1 2017

Lời giải:

Nhân $4$ vào cả hai vế, phương trình trở thành:

\(4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)

\(\Leftrightarrow (2x-y)^2+3(y-2)^2+(2z-2)^2=0\)

\((2x-y)^2, (y-2)^2,(2z-2)^2\geq 0\forall x,y,z\in\mathbb{Z}\) nên

\((2x-y)^2+3(y-2)^2+(2z-2)^2\geq 0\)

Dấu $=$ xảy ra khi \(\left\{\begin{matrix} 2x-y=0\\ y-2=0\\ 2z-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\\ z=1\end{matrix}\right.\)

Vậy \((x,y,z)=(1,2,1)\) là nghiệm của HPT

16 tháng 10 2019

Giải toán trên mạng

  • Câu hỏi của s2 Lắc Lư s2
  • Mới nhất
  • TẠO CÂU HỎI MỚI
s2 Lắc Lư s2 Trả lời 2 Đánh dấu

25 tháng 11 2015 lúc 21:27

GPT ngiệm nguyên x2+y2+z2=2xyz

o l m . v n

Toán lớp 9 Hoàng Anh Tú 25 tháng 11 2015 lúc 21:44
Báo cáo sai phạm

Vậy phương trình chỉ có nghiệm tầm thường (0;0;0)

Đúng 1 Sai 1 s2 Lắc Lư s2 đã chọn câu trả lời này. Link kiss_rain_and_you 25 tháng 11 2015 lúc 22:03
Báo cáo sai phạm

vì 2xyz chẵn => X^2+y^2+z^2 chẵn

2TH

TH1: giả sử x chẵn,y,z đều lẻ thì

x=2a,y=2b+1,z=2c+1

thay vào phương trình đã cho thì được VT lẻ , VP chẵn nên mẫu thuẫn

TH2: 3 số đều chẵn

x=2a,y=2b,z=2c

=> 4(a^2+b^2+c^2)=16abc

=> a^2+b^2+c^2=4abc

cứ như thế,pt lùi vô hạn, nghiệm bằng 0

x=y=z=0

Đúng 6 Sai 0 Link

Gợi ý cho bạn

16 tháng 10 2019

pt lùi vô hạn vì sao nghiệm = 0

5 tháng 12 2018

bài này là >=nhé bạn

Áp dụng bđt AM-GM:

\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+x^2z^2\ge2\sqrt{x^2y^2z^4}=2xyz^2\)

\(x^2z^2+x^2y^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

cộng theo vế và rút gọn

\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{x^2y^2+y^2z^2+z^2x^2}{x+y+z}\ge xyz\)

\("="\Leftrightarrow x=y=z\)

9 tháng 1 2018

Bài này cũng dễ mà:

Áp dụng BĐT Cô-si, ta có:

\(y+z+1\ge3\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)

\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)

\(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)

Áp dụng BĐT Cauchy -Schwaz:

\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

Mà:

\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)

\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)

Áp dụng BĐT Bunhicopski:

\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)

\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1

9 tháng 1 2018

@Lightning Farron vào thể hiện đẳng cấp đi anh zai :))

14 tháng 2 2018

ta có : \(x^2+y^2+z^2+x^2y^2z^2-4xyz+y^2z^2-2yz+1\ge0\)

\(\Leftrightarrow\left(y^2-2yz+z^2\right)+\left(x^2-2xyz+y^2z^2\right)+\left(x^2y^2z^2-2xyz+1\right)\ge0\)

\(\Leftrightarrow\left(y-z\right)^2+\left(x-yz\right)^2+\left(xyz-1\right)^2\ge0\) (đúng \(\forall x;y;z\))

\(\Rightarrow\) (đpcm)