K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

mk k bt lm. Mk ms hk lp 8...

AH
Akai Haruma
Giáo viên
23 tháng 1 2017

Lời giải:

Nhân $4$ vào cả hai vế, phương trình trở thành:

\(4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)

\(\Leftrightarrow (2x-y)^2+3(y-2)^2+(2z-2)^2=0\)

\((2x-y)^2, (y-2)^2,(2z-2)^2\geq 0\forall x,y,z\in\mathbb{Z}\) nên

\((2x-y)^2+3(y-2)^2+(2z-2)^2\geq 0\)

Dấu $=$ xảy ra khi \(\left\{\begin{matrix} 2x-y=0\\ y-2=0\\ 2z-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\\ z=1\end{matrix}\right.\)

Vậy \((x,y,z)=(1,2,1)\) là nghiệm của HPT

21 tháng 1 2017

x2 + y2 + z2 - xy - 3y - 2z + 4 = 0

\(\Leftrightarrow\)(x2 - xy +\(\frac{y^2}{4}\)) + (\(\frac{3y^2}{4}\) - 3y + 3) + (z2 - 2z + 1) = 0

\(\Leftrightarrow\)(x -\(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0

\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)

NV
27 tháng 4 2020

\(4x^2+4y^2+4z^2-4xy-12y-8z+12< 0\)

\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2< 4-4\left(z-1\right)^2\)

Do \(\left(2x-y\right)^2+3\left(y-2\right)^2\Rightarrow4-4\left(z-1\right)^2>0\)

\(\Rightarrow\left(z-1\right)^2< 1\Rightarrow z-1=0\Rightarrow z=1\)

\(\Rightarrow\left(2x-y\right)^2< 3-3\left(y-2\right)^2\)

Tương tự ta có \(3-3\left(y-2\right)^2>0\Rightarrow y-2=0\Rightarrow y=2\)

\(\left(2x-2\right)^2< 3\Rightarrow\left(x-1\right)^2< \frac{3}{4}\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Bài 1:

Ta có:

\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)

\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)

\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)

Hoàn toàn tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)

Cộng theo vế các BĐT trên:

\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Bài 2:

BĐT cần chứng minh tương đương với:

$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$

$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$

$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$

$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$

$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$

BĐT trên luôn đúng vì:

$(a-b)^2\geq 0, \forall a,b$

$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$

$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$

$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$

$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$

Do đó ta có đpcm.

Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$

AH
Akai Haruma
Giáo viên
22 tháng 7 2020

Lời giải:

Áp dụng BĐT AM-GM với các số dương $x,y,z$ ta có:

$(\sqrt{3}-1)^2x^2+y^2\geq 2(\sqrt{3}-1)xy$

$(\sqrt{3}-1)^2z^2+y^2\geq 2(\sqrt{3}-1)yz$

$2(\sqrt{3}-1)x^2+2(\sqrt{3}-1)z^2\geq 4(\sqrt{3}-1)xz$

Cộng theo vế và thu gọn:

2(x^2+y^2+z^2)\geq 2(\sqrt{3}-1)(xy+yz+2xz)$

$\Rightarrow P=\frac{x^2+y^2+z^2}{xy+yz+2xz}\geq \sqrt{3}-1$

Vậy $P_{\min}=\sqrt{3}-1$ khi $(\sqrt{3}-1)x=(\sqrt{3}-1)z=y$

a: \(A=77^2+77\cdot22+77=7700\)

b: \(B=2\cdot\left(1.007+0.006\right)+2\left(-0.006-1.007\right)\)

\(=0\)

c: \(C=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2=\left(3-1\right)\cdot\left(3-2\right)^2=2\)

d: \(D=\left(-5\right)^2\cdot2-2+\left(-5\right)\cdot2^2+5\)

\(=25\cdot2-2-5\cdot4+5\)

=50-2-20+5

=55-22=33

5 tháng 12 2018

bài này là >=nhé bạn

Áp dụng bđt AM-GM:

\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+x^2z^2\ge2\sqrt{x^2y^2z^4}=2xyz^2\)

\(x^2z^2+x^2y^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

cộng theo vế và rút gọn

\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{x^2y^2+y^2z^2+z^2x^2}{x+y+z}\ge xyz\)

\("="\Leftrightarrow x=y=z\)