Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử [(1+2+3+.......+n)-7] chia hết cho 10
=>[(1+2+3+.......+n)-7= \(\frac{n.\left(n+1\right)}{2}\)- 7 \(⋮\)10
=> \(\frac{n.\left(n+1\right)}{2}\)có tận cùng là 7
Nhưng \(\frac{n.\left(n+1\right)}{2}\)chỉ có tận cùng là : 5 ; 2 ; 3 ; 4 ; 0 , không có tận cùng là 7 nên giả thiết trên là sai
Vậy [ ( 1 + 2 + 3 + ... + n ) - 7 ] không chia hết cho 10 với mọi n thuộc N
1) trường hợp 1: chia 3 dư 0
-> chia hết cho 3
trường hợp 2 : chia 3 dư 1 -> n=3k+1
(3k+1)(3k+3)(3k+4 )
3(3k+1)(k+1)(3k+4) chia hết cho3
trường hơp 3; chia 3 dư hai-> n=3k+2
(3k+3)(3k+4)(3k+5)=3(k+1)(3k+4)(3k+5) chia hết cho 3
( ban kiem tra de dung khong 3 so tn lien tiep mới dc : (n+1)(n+2)(n+3)
câu 1 sai đề
Vì n(n+2)(n+3) = 3n+2+3 = 3n+5
3n chia hết cho 3 mà 5 ko chia hết cho 3
Suy ra với mọi STN n thì n(n+2)(n+3) ko chia hết cho 3
a) có 3n +7 chia hêt cho n
ta thấy 3n chia hết cho n
=> 7 chia hết cho n
=> n
∈Ư(7) ={ 1;-1;7;-7}
vậy ....
b) có 27 - 5n chia hết cho n
ta thấy 5n chia hết cho n
=> 27 chia hết cho n
=> n
Bài 2:
A=n(n+1)+1
Vì n;n+1 là hai số nguyên liên tiếp
nên n(n+1) chia hết cho 2
=>n(n+1)+1 không chia hết cho 2
hay A không chia hết cho 8
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Ta có: n2 + n = n(n + 1)
Do: n là STN => n và n + 1 là 2 STN liên tiếp => n(n + 1) có tận cùng là 0 ; 2 ; 6
Khi n(n + 1) có tận cùng là 0 => n(n + 1) + 6 có tận cùng là 6 không chia hết cho 5 (1)
Khi n(n + 1) có tận cùng là 2 => n(n + 1) + 6 có tận cùng là 8 không chia hết cho 5 (2)
Khi n(n + 1) có tận cùng là 6 => n(n + 1) + 6 có tận cùng là 2 không chia hết cho 5 (3)
Từ (1);(2);(3) ta được: n(n + 1) + 6 không chia hết cho 5 <=> n2 + n + 6 không chia hết cho 5.