Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 11…122…2=11…100…0+22…2(n chữ số 1, n chữ số 2, n chữ số 0)
=11…1.10…0+11…1.2
=11…1.10n+11…1.2
=11…1.(10n+2)
=(10…0+1).(10n+2)
=(10n+1).(10n+2)
Vì 10n+1 và 10n+2 là 2 số tự nhiên liên tiếp.
=> 11…12…2 là tích của 2 số tự nhiên liên tiếp.
111...122...2 = 111..100..0 + 22...2= 11...1 x 100...0(n số 0) + 111...1 x 2 = 11...1 x 100...2 = 111...1 x (99..9(n số 9) + 3)
=111...1 x (33...3 x 3 +3) = 11...1 x (333...4 x 3) = 33...3(n số 3) x 33...34 là tích của 2 số tự nhiên liên tiếp.
Bài 1: 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) => đpcm
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
Cho mình làm lại nha :
Bài 1: Không. Vì 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn)
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2. =>
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
\(B=\frac{10^{2n}-1}{9}+\frac{10^n-1}{9}+6.\frac{10^n-1}{9}+8\)
\(B=\frac{10^{2n}}{9}-\frac{1}{9}+\frac{10^n}{9}-\frac{1}{9}+\frac{6.10^n}{9}-\frac{6}{9}+8\)
\(B=\left(\frac{10^n}{3}\right)^2+2.\frac{10^n}{3}.\frac{8}{3}+\left(\frac{8}{3}\right)^2-10^n=\left(\frac{10^n}{3}+\frac{8}{3}\right)^2-10^n\)
2/ Ta có : abcd = (5c + 1 )^2
Với c = 6 => ( 5c + 1 )^2 = 31^2 = 961 < 1000
=> c \(\in\left\{7;8;9\right\}\)
Với c = 7 =>( 5c + 1 )^2 = 36^2 = 1296 ( loại ) Vì 9 khác 7
c = 8 => ( 5c + 1 )^2 = 41^ 2 = 1681 ( thỏa mãn )
c = 9 => ( 5c + 1 )^2 = 46^2 = 2116 ( loại ) vì 1 khác 9
Câu hỏi của Nguyễn Thị Giang - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
(Tất cả những chỗ 111...11; 222..22; 000...00; 999...99 đều có n chữ số)
Đặt \(A=111....11222..22\)
\(\Rightarrow A=111..11.1000...00+2.111....11\)
\(\Rightarrow A=111...11.10^n+2.111...11\)
\(\Rightarrow A=111...11\left(10^n+2\right)\) (1)
Đặt 1111...11 = k => 9k = 999..999 => 9k + 1 = 1000..000 = 10n
Thay vào (1) ta có:
A = k.(9k + 1 + 2) = k.(9k + 3) = 3k.(3k+1)
Mà 3k và 3k + 1 là hai số tự nhiên liên tiếp => đpcm