Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 32 số có dạng 32,3232,...,3232...3232
Theo nguyên lí Diriclet tồn tại 2 số có cùng số dư khi chia cho số 31
Giả sử 2 số đó là 32...32,32...32( lần lượt có m và n cặp 32, n>m)
Khi đó hiệu 2 số đó chia hết cho 31, tức (32...32).10m( n-m cặp 32 )
Mặt khác (10m,31)=1
Từ đó suy ra số 32...32 (n-m cặp 32) chia hết cho 31
Vì có 3 số lẻ nên dư khi chia cho 8 chỉ có thể là 1, 3, 5, 7.
Ta chia thành 2 nhóm:
Nhóm 1: dư 1 và dư 7
Nhóm 2: dư 3 và dư 5
Có 2 trường hợp TH1: 3 số đã cho có 2 số thuộc 1 trong 2 nhóm trên.
Khi đó tổng của 2 số đó sẽ chia hết cho 8 (Vì tổng của 1 số dư 1 và 1 số dư 7 sẽ chia hết cho 8, cũng như tổng 1 số dư 3 và 5 cũng chia hết cho 8)
TH2: 3 số đã cho không thuộc 1 trong 2 nhóm trên. Khi đó có thể chắc chắn 1 điều là có 2 số cùng số dư. Khi đó hiệu của chúng sẽ chia hết cho 8.
Chọn dãy
1; 11; 111; ... ;111...1 (số cuối có 20 c/s 1)
Chắc chắn trong dãy có 2 số có cùng số dư khi chia cho 19
2 số đó là
111..1(a c/s 1); 11..1(b c/s 1) [1< a < b < 20]
=>111..1 - 11..1 chia hết cho 19 [b c/s 1 - a c/s 1]
=>111...100...0 chia hết cho 19 [b - a c/s 1 ; a c/s 0]
=>11..1 x 10a chia hết cho 19 [b-a c/s 1]
Mà (19;10)=1 =>(19;10a)=1
=> 111..1 chia hết cho 19 với b-a c/s 1
Câu 3
Giả Sử: k = 4n
=>194n - 1 = (...1) - 1 = (...0) chia hết cho 10
Vậy có thể tìm đc 1 STN k chia hết cho 10
Ta biết rằng số nguyên tố lớn hơn 3 thì có 1 trong 2 dạng sau: \(6k+1;6k-1\)
Xét số nguyên tố có dạng: \(6k+1\)
Nếu k chẵn thì \(6k+1\)chia cho 12 dư 1.
Nếu k lẻ thì \(6k+1\)chia cho 12 dư 7.
Xét số nguyên tố dạng \(6k-1\)
Nếu k chẵn thì \(6k-1\)chia cho 12 dư 11.
Nếu k lẻ thì \(6k-1\)chia cho 12 dư 5.
\(\Rightarrow\)Số nguyên tố khi chia cho 12 thì có các số dư như sau: \(1;2;3;5;7;11\)
Từ đây ta thấy rằng trong 7 số nguyên tố bất kỳ sẽ có ít nhất 2 số có cùng số dư khi chi cho 12. Nên hiệu hai số đó sẽ chia hết cho 12.
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
323232..........32=101010..10.32
=> tồn tại.....................
sao 1010...10 chia hết cho 32 vậy bạn