\(n^5-5n^3+4n\) chia het cho 120

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2015

Ta có

\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)\)

\(=n.\left(n^2\left(n^2-1\right)-4\left(n^2-1\right)\right)=n.\left(n^2-4\right)\left(n^2-1\right)\)

\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 5 số liên tiếp

=>chia hết cho 120

27 tháng 11 2015

n5-5n3+4n=n5-4n3-n3+4n=n3(n2-4)-(n3-4n)=n3(n2-4)-n(n2-4)=(n3-n)(n2-4)

rồi bạn c/m 1 trong 2 thừa số chia hết cho 120

3 tháng 8 2016

Có: \(n^5-5n^3+4n\)

\(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)

\(=n\left(n^2-1\right)\left(n^2-4\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Đây là 4 số tự nhiên liên tiếp nên chia hết cho 120

3 tháng 8 2016

5 số tự nhiên liên tiếp nhá TVL

19 tháng 10 2016

Ta có :

\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

chia hết cho \(2,3,4,5.\)

b ) Cần chứng minh 

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*

là một số chính phương .

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt :   \(n^2+3n=y\) thì 

            \(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)

         \(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*

23 tháng 3 2018

Đặt biểu thức là A. Ta có:

Tổng các số hạng của A là: 100-1+1=100 (số hạng)

Nhóm 4 số hạng liên tiếp với nhau được 25 nhóm như sau: 

A = (3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)

A = 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34) = (3+32+33+34)(3x+3x+4+...+3x+96)

=> A = 120.(3x+3x+4+...+3x+96)

=> A chia hết cho 120 với mọi x thuộc N

13 tháng 11 2015

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120

13 tháng 11 2015

CHTT 

đề bồi dưỡng à

13 tháng 3 2017

8.2+2n+1 

=2n .(8+2)

=2n.10 chia hết cho 10

=> 8.2n +2n+1 chia hết cho 10

\(3^{n+3^{ }}-2.3^n+2^{n+5}-7.2^n\)

\(=3^n.\left(3^3-2\right)+2^n\left(2^5-7\right)\)

\(=3^n.25+2^n.25\)

=\(25.\left(3^n+2^n\right)\)chia hết cho 25

=>\(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)

k cho mình nhé

3 tháng 9 2019

\(n^2+4n+3=n^2+2.n.2+2^2-1\)

\(=\left(n+2\right)^2-1\)

\(=\left(n+2-1\right).\left(n+2+1\right)\)

\(=\left(n-1\right).\left(n+3\right)⋮8\)

3 tháng 9 2019

Ta có n2+4n+3=(n+1)(n+3)

Vì n là số lẻ nên (n+1)và (n+3) là hai số tự nhiên chẵn liên tiếp

Do đó một trong hai số có một số chia hết cho 4 khi đó số còn lại chia hết cho 2

Vậy tích (n+1)(n+3) chia hết cho 8 và ta có điều phải chứng minh

4 tháng 9 2016

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}.\left(3^2+1\right)+2^{n+1}.\left(2^2+2\right)\)

\(=3^n.3.2.5+2^{n+1}.6\)

\(=3^n.6.5+2^{n+1}.6\)

\(=6.\left(3^n.5+2^{n+1}\right)\)chia hết cho 6

=> điều cần chứng minh