K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Hướng dẫn:

Đặt ƯC(tử, mẫu)=d. 

Phương pháp:

Cần CM được d=1

Cách làm:

Ta nhân tử với 1 số bất kì, nhân mẫu với 1 số bất kì rồi trừ đi sao cho triệt tiêu được cả 2 biểu thức chứa n.

Cuối cùng ta sẽ được 1 \(\in\)B(d) => d=1

11 tháng 2 2017

gọi UCLN[5n+2;3n+1]là d thì 5n+2chia hết cho d nên [5n+2]*3=15n+6 chia hết cho d

3n+1chia hết cho d nên [3n+1]*5 =15n+5]chia hết cho d vậy [15n+6]-[15n+5] chia hết cho d hay 1 chia hết cho d vậy d = 1 nên phan số đó la phân số tối giản cấu sau tương tự mk ko có thời gian nhé

12 tháng 2 2017

mk biết làm bài này đấy nhưng hơi dài

12 tháng 2 2017

Hướng dẫn: Đặt (tử, mẫu)=d

Phương pháp: Tìm được d = 1.

Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n. 

                Cuối cùng sẽ tìm được 1 là bội của b => d=1

Còn lại cậu tự làm nhé!

12 tháng 2 2017

Gợi ý thôi chứ giải ra dài lắm !!

\(\frac{a}{b}\) tối giản khi và chỉ khi UCLN(a;b)=1

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

9 tháng 8 2016

Bài 2:

a)Gọi UCLN(14n+3;21n+4) là d

Ta có:

[3(14n+3)]-[2(21n+4)] chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản

b)Gọi UCLN(12n+1;30n+2) là d 

Ta có:

[5(12n+1)]-[2(30n+2)] chia hết d

=>[60n+5]-[60n+4] chia hết d

=>1 chia hết dSuy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản

c)Gọi UCLN(3n-2;4n-3) là d

Ta có:

[4(3n-2)]-[3(4n-3)] chia hết d

=>[12n-8]-[12n-9] chia hết d

=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản

d)Gọi UCLN(4n+1;6n+1) là d

Ta có:

[3(4n+1)]-[2(6n+1)] chia hết d

=>[12n+3]-[12n+2] chia hết d

=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản

5 tháng 1 2018

a, \(\frac{3n}{3n+1}\) 

Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z 

\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1

\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản

Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )

b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)

Đề bài sai

Các câu c,d,e,g,h tương tự

5 tháng 1 2018

Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1 

Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1

7 tháng 2 2018

a, Đặt d là ƯCLN( 12n+1 ; 30n+2 )

Ta có :       \(\left(12n+1\right)⋮d\)                            \(\Rightarrow5\left(12n+1\right)⋮d\) 

                   \(\left(30n+2\right)⋮d\)                               \(2\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)

\(\Rightarrow1⋮d\)            \(\Rightarrow d=1\)

\(\Rightarrow12n+1;30n+2\) là hai số nguyên tố cùng nhau

Vậy phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản.

19 tháng 2 2018

Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)

\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản 

19 tháng 2 2018

a        Gọi ước chung của 2n+5 và 3n+7 là n

        2n+5 ⋮ x=>6n+15⋮x 

       3n+7  ⋮ x =>6n+14 ⋮x

        =>1 chia hết x=> x thuộc ước của 1

          Vậy phân số đó tối giản

b       6n-14 chia hết x

         2n-5 chia hết x=>6n-15 chia hết x

        =>1 chia hết x=> x thuộc ước của 1

        Vậy phân số đó tối giản