Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcabc = 1001xabc = 11x91xabc = 13x77xabc nên abcabc bao giờ cũng chia hết cho 11 và 13
\(\overline{abcabc}=\overline{abc}\cdot1000+\overline{abc}\)
\(=\overline{abc}\cdot1001\)
\(1001⋮11\)
\(\Rightarrow\overline{abc}\cdot1001⋮11\) (đpcm)
abcabc = abc . 1000 + abc = abc . (1000 + 1)
=> abc . 1001 = abc . 99 . 11
Vì 11 chia hết cho 11 nên abc . 99 . 11 chia hết cho 11
=> abcabc lúc nào cx chia hết cho 11 (đpcm)
\(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)
\(=100100a+10010b+1001c\)
\(=11.9100a+11.910b+11.91c\)
\(=11.\left(9100a+910b+91c\right)⋮11\)
Đặt \(A=182\left(ab\right)^2-81a^3b-81ab^3-10a^4-10b^4\)
Ta có : \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b-a\right)=9\left(a-b\right)\)
Theo giả thiết thì \(\left(\overline{ab}-\overline{ba}\right)⋮11\) , tức là \(9\left(a-b\right)⋮11\)
Mà (9;11) = 1 nên \(\left(a-b\right)⋮11\)(1)
Mặt khác , \(1\le a\le9\); \(0\le b\le9\)
Do vậy \(-8\le a-b\le9\)(2)
Từ (1) và (2) ta có \(a-b=0\Leftrightarrow a=b\)
Với a = b thay vào A được : \(182a^4-81a^4-81a^4-10a^4-10a^4=0\) luôn chia hết cho 14641
Vậy có đpcm.
Ta có
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
Chia hết cho 11 => (a - b) chia hết cho 11 (1)
Gọi UC(ab; ba) là d ta có
ab - ba = 11 chia hết cho d
Mà ab và ba là số có 2 chữ số và 11 là số nguyê tố nên d = 11
Từ đó ta có
ab = 10a + b chia hết cho 11 (2)
ba = 10b + a chia hết cho 11 (3)
Ta có: 182(ab)2-81a3b-81ab3-10a4-10b4
= - (10a + b)(10b + a)(a - b)2 (4) ( cái này mình ghi nhâ tử luôn cho gọn nha)
Từ (1), (2), (3), (4) ta có 182(ab)2-81a3b-81ab3-10a4-10b4 chia hết cho 114 = 14641
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????