K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

Có: a + b = ab \(\le\frac{\left(a+b\right)^2}{4}\)

=> a + b \(\ge4\)

\(\frac{1}{a^2+2a}+\frac{1}{b^2+2b}+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(\ge\frac{4}{a^2+b^2+2\left(a+b\right)}+\sqrt{\left(1+ab\right)^2}\)

\(=\frac{4}{a^2+b^2+2ab}+\left(1+a+b\right)=\frac{4}{\left(a+b\right)^2}+\left(a+b\right)+1\)

\(=\frac{4}{\left(a+b\right)^2}+\frac{a+b}{4^2}+\frac{a+b}{4^2}+\frac{7}{8}\left(a+b\right)+1\)

\(\ge3\sqrt[3]{\frac{4}{\left(a+b\right)^2}.\frac{a+b}{4^2}.\frac{a+b}{4^2}}+\frac{7}{8}.4+1=\frac{3}{4}+\frac{7}{2}+1\)

Dấu "=" xảy ra <=> a = b = 2

21 tháng 2 2020

ta có:

\(3\left(b^2+2a^2\right)\ge\left(b+2a\right)^2\) \(\Leftrightarrow3b^2+6a^2\ge b^2+4ab+4a^2\)

\(\Leftrightarrow2b^2-4ab+2a^2\ge0\)

\(\Leftrightarrow2\left(b-a\right)^2\ge0\) (luôm đúng với mọi a;b>0)

=> đpcm

5 tháng 7 2019

\(0\le a,b,c\le1\)\(\Rightarrow\)\(\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2-a\le0\\b^2-b\le0\\c^2-c\le0\end{cases}}}\)

\(\Rightarrow\)\(\hept{\begin{cases}\left(a^2-a\right)\left(b-1\right)\ge0\\\left(b^2-b\right)\left(c-1\right)\ge0\\\left(c^2-c\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2b\ge a^2+ab-a\\b^2c\ge b^2+bc-b\\c^2a\ge c^2+ca-c\end{cases}}}\)

\(\Rightarrow\)\(a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)-\left(a+b+c\right)\) (1) 

Và \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\ge0\\\left(b-1\right)\left(c-1\right)\ge0\\\left(c-1\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}ab\ge a+b-1\\bc\ge b+c-1\\ca\ge c+a-1\end{cases}}}\)

\(\Rightarrow\)\(ab+bc+ca\ge2\left(a+b+c\right)-3\) (2) 

(1), (2) \(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\)

Lại có: \(\hept{\begin{cases}a\le1\\b\le1\\c\le1\end{cases}\Leftrightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\Leftrightarrow\hept{\begin{cases}a^3\le a^2\\b^3\le b^2\\c^3\le c^2\end{cases}}}\)

\(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\ge2\left(a^3+b^3+c^3\right)=2a^3+2b^3+2c^3\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=1;b=1;c=0\) và các hoán vị 

12 tháng 6 2020

Phùng Minh Quân ơi câu trả lời của bạn dài quá. Bạn có thể trả lời ngắn hơn mà.

17 tháng 7 2018

\(\Leftrightarrow3b^2+6a^2\ge b^2+4ab+4a^2\)

\(\Leftrightarrow2b^2-4ab+2a^2\ge0\)

\(\Leftrightarrow2\left(b^2-2ab+a^2\right)\ge0\)

\(\Leftrightarrow2\left(b-a\right)^2\ge0\)        ?(luôn đúng)

dấu''='' xảy ra khi và chỉ khi a=b

17 tháng 7 2018

Áp dụng BĐT Bunhiacopxki cho bộ 2 số \(\left(1;\sqrt{2}\right)\)và    \(\left(b;\sqrt{2}a\right)\)ta có:

     \(\left(b+2a\right)^2\le\left(1+2\right)\left(b^2+2a^2\right)\)

\(\Leftrightarrow\)\(\left(b+2a\right)^2\le3\left(b^2+2a^2\right)\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

p/s: mk không chắc

9 tháng 12 2018

a)Bunhia:

\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)

b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bđt câu a

=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)

Tự tìm dấu "="

9 tháng 12 2018

Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh

9 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\dfrac{a^2}{4a^2+2ab+2ac+bc}=\dfrac{a^2}{2a\left(a+b+c\right)+\left(2a^2+bc\right)}\)

\(\le\dfrac{1}{9}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)

\(=\dfrac{1}{9}\left(\dfrac{2a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)\(=\dfrac{1}{9}\left(\dfrac{2a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Suy ra BĐT cần chứng minh viết lại như sau:

\(\dfrac{1}{9}\left(\dfrac{2\left(a+b+c\right)}{a+b+c}+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ca}+\dfrac{c^2}{2c^2+ab}\right)\le\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ca}+\dfrac{c^2}{2c^2+ab}\le\dfrac{\dfrac{1}{3}}{\dfrac{1}{9}}-2=1\)

\(\Leftrightarrow\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ca}+\dfrac{2c^2}{2c^2+ab}\le2\)

\(\Leftrightarrow\left(1-\dfrac{2a^2}{2a^2+bc}\right)+\left(1-\dfrac{2b^2}{2b^2+ca}\right)+\left(1-\dfrac{2c^2}{2c^2+ab}\right)\ge1\)

\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge1\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{bc}{bc+2a^2}=\dfrac{b^2c^2}{b^2c^2+2a^2bc}\ge\dfrac{b^2c^2}{b^2c^2+a^2\left(b^2+c^2\right)}=\dfrac{b^2c^2}{a^2b^2+b^2c^2+a^2c^2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{ca}{2b^2+ca}\ge\dfrac{c^2a^2}{a^2b^2+b^2c^2+c^2a^2};\dfrac{ab}{2c^2+ab}\ge\dfrac{a^2b^2}{a^2b^2+b^2c^2+c^2a^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2+b^2c^2+c^2a^2}=1\)

Vậy BĐT cuối đúng hay ta có ĐPCM

NV
17 tháng 11 2019

Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến

Câu 2:

\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)

Tương tự, cộng lại và rút gọn sẽ có đpcm

17 tháng 11 2019

Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,

tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,

@Akai Haruma

giúp e vs ạ! thanks trước